
|
14. |
Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction Boosting PhotocatalysisXin Rong+, Hong-Juan Wang+, Xiu-Li Lu,* Rui Si,* and Tong-Bu Lu*Angew. Chem. Int. Ed., 2020, 59, 1961–1965. LINK |
 |
13. |
In Situ Coating CsPbBr3 Nanocrystals with Graphdiyne to Boost theActivity and Stability of Photocatalytic CO2 ReductionKe Su, Guang-Xing Dong, Wen Zhang,* Zhao-Lei Liu, Min Zhang,* and Tong-Bu Lu*ACS Appl. Mater. Interfaces, 2020, 12, 50464−50471. LINK |
 |
12. |
Graphdiyne-based Pd single-atom catalyst for semihydrogenation of alkynes to alkenes with high selectivity and conversion under mild conditionsXue-Peng Yin, Shang-Feng Tang, Chao Zhang, Hong-Juan Wang,* Rui Si,*Xiu-Li Lu* and Tong-Bu Lu*J. Mater. Chem. A, 2020, 8, 20925–20930. LINK |
 |
11. |
Integrating Z-scheme heterojunction of Co1-C3N4@α-Fe2O3 for efficient visible-light-driven photocatalytic CO2 reductionBing-Cai He, Chao Zhang, Pei-Pei Luo, Yu Li* and Tong-Bu Lu*Green Chem., 2020, 22, 7552–7559. LINK |

|
10. |
Unveiling Single Atom Nucleation for Isolating Ultrafine fcc Ru Nanoclusters with Outstanding Dehydrogenation ActivityYe Wang, Jia-Luo Li, Wen-Xiong Shi, Zhi-Ming Zhang,* Song Guo, Rui Si,* Meng Liu, Hong-Cai Zhou,* Shuang Yao, Chang-Hua An, and Tong-Bu Lu*Adv. Energy Mater., 2020, 2002138. LINK |

|
9. |
Synthesis of Wafer-Scale Monolayer Pyrenyl Graphdiyne on Ultrathin Hexagonal Boron Nitride for Multibit Optoelectronic MemoryXing-Han Wang, Zhi-Cheng Zhang, Jing-Jing Wang, Xu-Dong Chen,* Bin-Wei Yao, Ya-XinHou, Mei-Xi Yu, Yuan Li, and Tong-Bu Lu*ACS Appl. Mater. Interfaces, 2020, 12, 33069−33075. LINK |

|
8. |
Modulating the solubility and pharmacokinetic properties of 5-fluorouracil via cocrystallizationXia-Lin Dai, Chao Wu, Jin-Hui Li, Lian-Chao Liu, Xin He, Tong-Bu Lu* and Jia-Mei Chen*CrystEngComm, 2020, 22, 3670. LINK |
 |
7. |
Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalystMing Li, Hong-Juan Wang, Chao Zhang, Yong-Bin Chang, Sheng-Jie Li, Wen Zhang & Tong-Bu Lu*Science China Chemistry, 2020, 63(8): 1040-1045. LINK |
 |
6. |
Carbon-based single-atom catalysts for CO2 electroreduction: progress and optimization strategiesXiu-Li Lu, Xin Rong, Chao Zhang* and Tong-Bu Lu *J. Mater. Chem. A, 2020, 8, 10695. LINK |
 |
5. |
Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspectiveDong-Cheng Liu, Di-Chang Zhong*, and Tong-Bu LuEnergyChem, 2020, 2, 100034. LINK |

|
4. |
In situ synthesis of a nickel boron oxide/graphdiyne hybrid for enhanced photo/electrocatalytic H2 evolutionXue-Peng Yin†, Shu-Wen Luo†, Shang-Feng Tang, Xiu-Li Lu*, Tong-Bu Lu*Chinese Journal of Catalysis, 2021, 42, 1379-1386. LINK |

|
3. |
β-Cyclodextrin Decorated CdS Nanocrystals Boosting the Photocatalytic Conversion of AlcoholsJuan Wang†, You-Xiang Feng†, Min Zhang, Chao Zhang, Ming Li, Sheng-Jie Li, Wen Zhang* & Tong-Bu Lu*CCSChem., 2020, 2, 81–88. LINK |
 |
2. |
Crystal Structures, Stability, and Solubility Evaluation of Two Polymorphs of a 2:1 Melatonin−Piperazine CocrystalYan Yan, Xia-Lin Dai, Jun-Long Jia, Xing-Hua Zhao, Zhi-Wei, Li, Tong-Bu* Lu, Jia-Mei Chen*Cryst. Growth Des., 2020, 20, 2, 1079–1087. LINK |

|
1. |
Prussian blue analogues and their derived nanomaterials forelectrocatalytic water splittingLi-Ming Cao, David Lu, Di-Chang Zhong*, Tong-Bu Lu*Coordination Chemistry Reviews, 2020, 407, 213156. LINK |