SCIENCE CHINA Chemistry

ARTICLES

https://doi.org/10.1007/s11426-024-2536-8

Intermarriage of InVO₄ and BiVO₄ via cation-exchange to boost charge separation for efficient photocatalytic CH₄ oxidation to oxygenates

Guang-Xing Dong[†], Meng-Ran Zhang[‡], Cheng-Cheng Jiao, Zhao-Lei Liu, Ke Su, Min Zhang* & Tong-Bu Lu*

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

Received November 29, 2024; accepted January 18, 2025; published online February 24, 2025

Achieving efficient and highly selective conversion of CH₄ into high-value-added chemicals through photodriving under mild conditions remains a significant challenge, primarily due to the limited utilization efficiency of photogenerated carriers. Herein, we report an in-situ growth strategy for constructing a robust InVO₄-based heterojunction by intermarrying InVO₄ and BiVO₄ through cation-exchange. This method enables the resultant InVO₄/BiVO₄ heterojunction to possess strong interfacial electronic coupling, which accelerates the interface charge transfer and significantly enhances the separation efficiency of photogenerated carriers. Under visible light-driven reaction conditions at ambient temperature and pressure, the InVO₄/BiVO₄ heterojunction demonstrates high selectivity (>90%) in photocatalyzing the oxidation of CH₄ to high-value oxygenated hydrocarbons (CH₃OH and HCHO), with a yield of 318.9 µmol g⁻¹ h⁻¹, which is 4.8 times higher than that of pristine BiVO₄. Comprehensive control and isotope tracing experiments, as well as in-situ detection of transient species reveal that the key intermediate product CH₃OOH is primarily formed through the binding of ·CH₃ radicals with protons and O₂, explaining why the oxygen source of the CH₃OH product is mainly derived from O₂.

cation-exchange, CH₄ conversion, charge separation, photocatalysis, vanadate

Citation: Dong GX, Zhang MR, Jiao CC, Liu ZL, Su K, Zhang M, Lu TB. Intermarriage of InVO₄ and BiVO₄ via cation-exchange to boost charge separation for efficient photocatalytic CH₄ oxidation to oxygenates. Sci China Chem. 2025, 68. https://doi.org/10.1007/s11426-024-2536-8

Introduction

Natural gas has emerged as a prominent economic resource of the 21st century, distinguished by its continually expanding proven reserves and increasing extraction rates. However, methane (CH₄), the primary component of natural gas, exhibits a greenhouse effect significantly more potent than CO₂ [1,2]. If CH₄ can be efficiently converted into highvalue products under mild conditions, it would not only enhance its utilization value but also alleviate the substantial

costs and potential climate and environmental issues associated with natural gas transportation [3,4]. Nevertheless, the

chemical inertia of the C-H bonds poses a significant chal-

lenge for achieving direct conversion of CH₄ under mild conditions [5-8]. Currently, the high-efficiency catalysts

used for the direct conversion of CH4 are mostly rare and

expensive noble metals such as platinum and palladium, and

the reaction conditions often require high-energy inputs like

CH₄ to high-value-added products under mild conditions

high temperatures and high pressures. This is far from achieving the desired scalability and economy for CH₄ conversion in industry [9–14]. The replacement of traditional thermal catalysis with photocatalysis for the oxidation of

[†]Equally contributed to this work.

signifies a highly promising and emerging green technology [15–18].

In recent years, a diverse array of photocatalysts (such as TiO2, ZnO, BiVO4, and CeO2) have been developed to achieve photocatalytic oxidation of CH4 into high-valueadded products [19-28]. Nonetheless, these photocatalysts often suffer from low photocatalytic efficiency [29–31], due to the contradiction between the thermodynamic driving force required for the reaction and their light-harvesting capabilities, as well as the issue of severe carrier recombination. Additionally, the oxidation products derived from CH₄ are more prone to further oxidation than CH₄ itself, leading to excessive oxidation and compromised selectivity of the desired products. Among the numerous semiconductor photocatalysts developed, BiVO₄ is widely used in photocatalytic CH₄ oxidation due to its excellent visible light absorption and photo-oxidation capabilities [32]. However, pure BiVO₄ is hampered by severe photogenerated carrier recombination and limited reduction ability stemming from its overly positive reduction potential, leading to low photocatalytic activity for CH₄ oxidation [33]. Combining BiVO₄ with other semiconductors that possess a strong reducing ability to construct a Z-scheme heterojunction can enhance its reducing ability while improving the efficiency of photogenerated carrier separation [34,35]. Nevertheless, the interfaces of heterojunctions fabricated through traditional techniques, such as electrostatic self-assembly and insitu deposition, lack the necessary tightness, resulting in inefficient charge transfer at the interface.

To overcome this obstacle, we herein present an in-situ cation-exchange strategy for the construction of a BiVO₄based direct Z-scheme heterojunction, by introducing Bi³⁴ ions onto an InVO₄ substrate to form BiVO₄ (Figure 1a). The resultant InVO₄/BiVO₄ heterojunction can not only preserve the excellent oxidation performance of BiVO₄ and the superior reduction ability of InVO₄, but also possess a strong interfacial electronic coupling due to the tightly bonded interface, significantly promoting the migration and separation of photogenerated carriers. As anticipated, the prepared InVO₄/BiVO₄ heterojunction can achieve efficient photocatalytic conversion of CH₄ into high value-added oxygenated hydrocarbons under room temperature, atmospheric pressure, and visible light irradiation, utilizing atmospheric oxygen as an oxidant. The yield of oxygenated hydrocarbon products for InVO₄/BiVO₄ reaches up to 318.9 μmol g⁻¹ h⁻¹ with a selectivity of 94.5%, far superior to that of BiVO₄ alone. Moreover, the photogenerated carrier separation pathways within InVO₄/BiVO₄, as well as the reaction mechanism of photocatalytic CH₄ oxidation, have been comprehensively elucidated by incorporating photophysical characterization, isotope-tracing experiments, and in-situ detection of transient species.

2 Results and discussion

2.1 Structural and morphological characterization

The crystal structures of the InVO₄/BiVO₄ composite, pris-

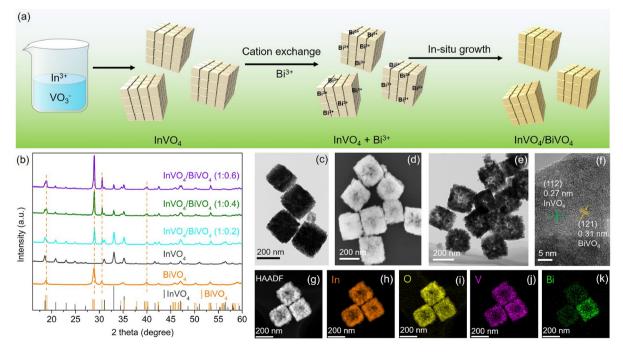


Figure 1 (Color online) (a) Schematic illustration of the preparation processes of InVO₄/BiVO₄. (b) XRD patterns of various photocatalysts. (c) TEM image of InVO₄. SEM (d), TEM (e), HRTEM (f), and HAADF-STEM (g) images of InVO₄/BiVO₄. (h–k) EDS mapping images (In, O, V, Bi) of InVO₄/BiVO₄.

tine InVO₄ and BiVO₄ were analyzed by X-ray diffraction (XRD) measurements. As depicted in Figure 1b, the characteristic diffraction peaks of the prepared InVO₄ substrate can be well matched with the orthorhombic phase of InVO₄ (JCPDS No. 48-0898), and the XRD pattern of pristine BiVO₄ reveals a monoclinic phase (JCPDS No. 14-0688). For the as-prepared InVO₄/BiVO₄ composite, apart from the distinct diffraction peaks of InVO₄, the diffraction peaks at 28.8°, 30.5°, and 40.2°, contributed by BiVO₄ can also be clearly identified. Their intensities are gradually enhanced with the increase in the introduced Bi³⁺ cation content, indicating the successful construction of the InVO₄/BiVO₄ composite through *in-situ* growth of BiVO₄ via cation-exchange, without altering the crystal structure of the InVO₄ substrate.

The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) measurements revealed that the pristine InVO₄ exhibits a regular cubic morphology (200–300 nm) composed of small cubic nanoparticles (20–30 nm) (Figure 1c, Figure S1, Supporting Information online). The InVO₄/BiVO₄ composite, obtained by in-situ growth of BiVO₄ on InVO₄ substrate via cation-exchange strategy, still maintains the cubic structure with unchanged dimensions compared to pristine InVO₄ (Figure 1d, e). This indicates that the morphological characteristics of InVO₄ were preserved during the conversion process. High-resolution TEM (HRTEM) image of InVO₄/BiVO₄ shows that the prepared InVO₄ belongs to the orthorhombic phase, with a lattice spacing of 2.7 Å clearly observed for the (112) crystalline plane of InVO₄. Additionally, a lattice spacing of 3.1 Å, corresponding to the (121) crystalline plane of monoclinic phase BiVO₄, is also discernible in the HRTEM image of InVO₄/BiVO₄ (Figure 1f). Moreover, energy-dispersive X-ray spectroscopy (EDS) mapping measurements demonstrated that In, V and O elements are uniformly distributed on the InVO₄ substrate (Figure S2), while Bi elements are uniformly distributed throughout the InVO₄/ BiVO₄ composite (Figure 1g-k, Figure S3), indicating that BiVO₄ in the InVO₄/BiVO₄ composite is evenly dispersed on the surface of the InVO₄ substrate. These results further confirmed the successful transformation and uniform loading of BiVO₄ on the InVO₄ substrate. The surface areas of the samples were obtained from the isothermal N₂ adsorptiondesorption curves of InVO₄/BiVO₄, InVO₄ and BiVO₄. The results revealed that the surface area of the InVO₄ substrate exceeded that of BiVO₄, and the surface area of InVO₄/ BiVO₄ was close to that of InVO₄ (Figure S4). This indicated that the structural characteristics of the InVO₄ substrate remained unchanged during the conversion process, which was consistent with the results of the TEM measurements. Additionally, the larger surface area was favorable for the catalyst to fully contact the reaction substrate, thereby enhancing catalytic activity.

High resolution X-ray photoelectron spectroscopy (XPS) measurements were further employed to investigate the interaction between InVO₄ and BiVO₄ in the as-prepared InVO₄/BiVO₄ composites. As depicted in the XPS survey spectrum of InVO₄/BiVO₄ (Figure S5), In, Bi, V, and O elements can be clearly identified. Notably, the binding energies of In 3d of the InVO₄/BiVO₄ sample exhibit a significant positive shift (~0.25 eV) compared to pure InVO₄, while the characteristic peaks of Bi 4f shift towards the lower binding energy by 0.30 eV compared to pristine BiVO₄ (Figure S6). Additionally, the binding energies of V 2p in the InVO₄/BiVO₄ composite fall between the corresponding binding energies of V 2p in pristine InVO₄ and BiVO₄ (Figure S7). These apparent changes in the binding energy imply a strong electronic coupling between InVO₄ and BiVO₄ in the InVO₄/BiVO₄ composite, indicating a closely contacted interface between InVO4 and BiVO4 via cationexchange in-situ growth, which will facilitate interfacial charge transfer at the InVO₄/BiVO₄ interface. The direction of binding energy shifts of these elements indicates the occurrence of free electron transfer from InVO4 to BiVO4 during the *in-situ* growth of BiVO₄ on the InVO₄ substrate, ultimately leading to the formation of a built-in electric field directed from InVO₄ to BiVO₄.

2.2 Charge transport mechanism

To elucidate the underlying physical mechanisms responsible for the generation of the built-in electric field and the migration pathway of photogenerated carriers at the InVO₄/BiVO₄ interface, the energy band structures of InVO₄ and BiVO₄ were first evaluated by ultraviolet-visible diffuse reflectance spectrum (UV-vis DRS) measurements. As illustrated in Figure S8, both InVO₄ and BiVO₄ demonstrate a robust responsiveness within the visible light range. By analyzing the corresponding Tauc plots, the band gaps (E_G) of InVO₄ and BiVO₄ can be determined to be 2.08 and 2.15 eV (Figure S9), respectively, which align with previous reports on these materials [36,37]. Furthermore, the valence band (VB) edge potentials (E_{VB}) of InVO₄ and BiVO₄ were established to be 1.53 and 2.26 V (vs. SHE pH = 7), respectively, based on ultraviolet photoelectron spectroscopy (UPS) measurements (Figure 2a). Consequently, the conduction band (CB) edge potentials (E_{CB}) of InVO₄ and $BiVO_4$ can be calculated from the difference between E_G and $E_{\rm VB}$, being -0.55 and 0.11 V vs. SHE, respectively, which are in close proximity to the flat-band potentials of InVO₄ and BiVO₄ derived from their Mott-Schottky plots (Figure S10). The resultant staggered energy structures between InVO₄ and BiVO₄ are illustrated in Figure 2b.

The Fermi levels of $InVO_4$ and $BiVO_4$ were further determined by UPS measurements, being -4.19 and -5.25 eV, respectively. When $BiVO_4$ grows *in-situ* on $InVO_4$ through

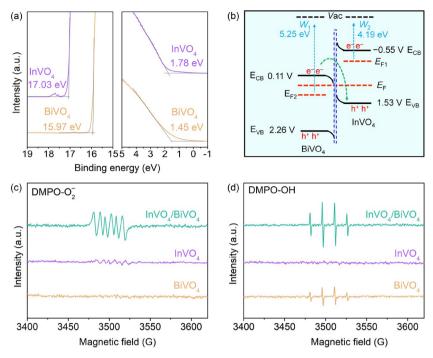


Figure 2 (Color online) (a) The UPS spectra of InVO₄ and BiVO₄. (b) Energy band structures of InVO₄ and BiVO₄, and the schematic illustration of the charge-transfer mechanism of the direct Z-scheme in InVO₄/BiVO₄. EPR spectra of (c) DMPO-O₂⁻ and (d) DMPO-OH for InVO₄, BiVO₄, and InVO₄/BiVO₄.

cation-exchange, the higher Fermi level of InVO₄ relative to BiVO₄ will drive the migration of free electrons from InVO₄ to BiVO₄, ultimately unifying the Fermi level of the entire system. This deduction is consistent with the results of the XPS analysis presented above. Additionally, the transfer of free electrons from InVO4 to BiVO4 will cause the energy bands of InVO₄ and BiVO₄ to bend upward and downward, respectively, as illustrated in Figure 2b. It is evident that the band bending of InVO₄ and BiVO₄, coupled with the built-in electric field formed between them, will impede the separation of photogenerated carriers in the InVO₄/BiVO₄ heterojunction via the traditional dual-channel charge transfer pathway. Instead, they encourage the recombination of photogenerated electrons in BiVO₄ with photogenerated holes in InVO₄, facilitating photogenerated carrier separation according to a Z-scheme transfer mechanism as visualized in Figure 2b. To verify this inference, *in-situ* irradiated X-ray photoelectron spectroscopy (ISI-XPS) measurements were employed to investigate the photogenerated carrier transfer orientation at the InVO₄/BiVO₄ heterojunction interface [38,39]. The results show that the binding energies of In 3d in the InVO₄/BiVO₄ shift negatively before and after light irradiation, while the binding energies of Bi 4f shift towards higher binding energy (Figure S11). These photoexcitationinduced changes in elemental binding energies indicate the transfer of photogenerated electrons from BiVO₄ to InVO₄ in the InVO₄/BiVO₄ heterojunction, confirming a Z-scheme charge transfer mechanism for photogenerated carriers in the InVO₄/BiVO₄ heterojunction.

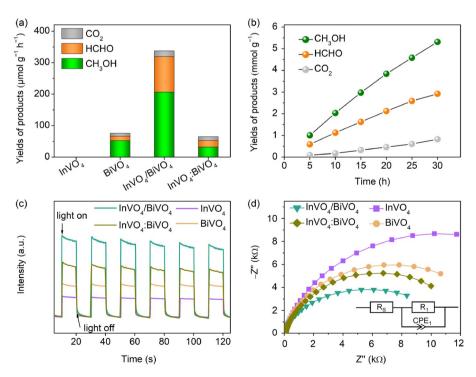
To further validate the Z-scheme transfer route of photogenerated carriers in InVO₄/BiVO₄ heterojunction, the redox capacities of InVO4, BiVO4 and InVO4/BiVO4 were examined by radical trapping experiments with 5,5-dimethyl-1pyrroline-N-oxide (DMPO) as the radical trapping agent [40]. As illustrated in Figure 2c, BiVO₄ exhibits no detectable DMPO-O2 signals after irradiation, due to the insufficient driving force of photogenerated electrons in the conduction band of BiVO₄ ($E_{CB} = 0.11 \text{ V vs. SHE}$) to reduce O_2 to O_2^- (-0.33 V vs. SHE). Compared with InVO₄ alone, the significantly enhanced DMPO-O₂ characteristic peaks were detected in the InVO₄/BiVO₄ heterojunction. This observation suggests that the photoelectrons in the conduction band of InVO₄ in the InVO₄/BiVO₄ heterojunction are greatly retained and not transferred to the conduction band of BiVO₄. Meanwhile, significant DMPO-OH signals were detected for BiVO₄; however, no characteristic signals of DMPO-OH were observed for InVO₄ as presented in Figure 2d, because the valence band of InVO₄ ($E_{VB} = 1.53 \text{ V } vs.$ SHE) has a more negative oxidation potential relative to the oxidation of H₂O to OH radicals. However, stronger DMPO-OH signals can be observed for the InVO₄/BiVO₄ heterojunction, implying that the photogenerated holes in the BiVO₄ valence band are well preserved rather than transferred to the valence band of InVO₄. These results further demonstrate the Z-scheme charge transfer mechanism in the InVO₄/BiVO₄ heterojunction. Therefore, the photogenerated electrons in the conduction band of InVO₄ and the photogenerated holes in the valence band of BiVO4 remained,

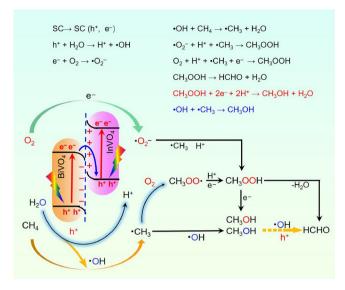
which endow the InVO₄/BiVO₄ heterojunction with strong redox capacities.

2.3 Photocatalytic methane oxidation performance

The photocatalytic activities of various catalysts towards CH₄ oxidation were evaluated in a specifically designed circulating flow system operated at room temperature and atmospheric pressure, using atmospheric oxygen as the oxidant (Figure S12). It is worth noting that the flow system allows a better separation of the oxidation products to prevent their excessive oxidation [13]. As depicted in Figure 3a, no significant oxidation products are observed using InVO₄ as the photocatalyst, which is attributed to the insufficient oxidative capacity of the photogenerated holes in InVO₄. The pristine BiVO₄ exhibits poor photocatalytic CH₄ oxidation activity, with the yield of oxidation products (CH3OH, HCHO) being only 66.2 µmol g⁻¹ h⁻¹, and the selectivity being 87.7%. Notably, the photocatalytic CH₄ oxidation activity of InVO₄/BiVO₄ composites prepared through a cation-exchange strategy is significantly enhanced. The optimal photocatalytic yield for CH₄ oxidation to oxygenated hydrocarbons reaches 318.9 µmol g⁻¹ h⁻¹ with a selectivity of 94.5%, which is 4.8 times higher than that of BiVO₄ alone. Compared with other reported catalysts under similar mild conditions, the InVO₄/BiVO₄ heterojunction prepared in this work exhibits good performance in the photocatalytic oxidation of methane to oxygenates (Table S1, Supporting Information online). Additionally, the InVO₄:BiVO₄ catalyst was further prepared by the traditional electrostatic self-assembly method for comparison (see details in the Experimental section). The measurement results reveal that the photocatalytic CH₄ oxidation activity of the InVO₄:BiVO₄ catalyst is not significantly improved compared to pristine BiVO₄. These findings suggest that the *in-situ* cation-exchange strategy provides the InVO₄/BiVO₄ Z-scheme heterojunction with a more closely contacted interface, thus ensuring effective charge separation efficiency and excellent redox capability, both of which are crucial for improving the photocatalytic efficiency.

The stability of the InVO₄/BiVO₄ heterojunction catalyst was further investigated by continuous irradiation reaction in the circulating flow reactor system. As shown in Figure 3b, the catalyst can maintain excellent catalytic activity over 30 h, yielding oxygenated hydrocarbons at a rate of 8230 umol g⁻¹ with a selectivity exceeding 90%. Moreover, the yields of photocatalytic reaction products exhibit only a slight decrease after 7 repeated experiments (Figure S13), which confirms the stability of the catalyst. Further comparison of the XRD spectra before and after the reaction shows that the characteristic diffraction peaks of the components remain basically unchanged (Figure S14), suggesting that the crystal structure of the catalyst is not affected during the reaction process. In addition, the SEM measurement results show that the morphology and size of InVO₄/ BiVO₄ after the photocatalytic reaction have hardly changed




Figure 3 (Color online) (a) Yields of products with different photocatalysts in the circulating flow system, reaction conditions: 10 mg photocatalyst, the mixture of CH₄ and air (gas ratio of CH₄/air: 10/1) at a flow rate of 20 mL min⁻¹, 3 h of 300 W Xe lamp ($\lambda \ge 400$ nm) irradiation at room temperature with a light intensity of 200 mW cm⁻². (b) Time-on-line amounts of products by InVO₄/BiVO₄. *I-t* curves (c) and EIS Nyquist plots (d) of different photocatalysts.

compared to those of InVO₄/BiVO₄ before the reaction (Figure S15). All of the above experimental evidence fully demonstrates the excellent photocatalytic stability of the InVO₄/BiVO₄ composites prepared in this work.

In addition, the relationship between the photogenerated carrier separation efficiency and catalytic performance of InVO₄/BiVO₄ composite was further investigated by employing transient photocurrent response (I-t) and electrochemical impedance spectroscopy (EIS) measurements. The I-t curves show that the photocurrent density of InVO₄/ BiVO₄ composite is significantly higher than that of InVO₄ or BiVO₄ (Figure 3c), indicating that the photogenerated carriers transport efficiency of the heterojunction composite is greatly improved. The EIS measurements demonstrate that the charge transfer resistance of the composite is significantly smaller than those of the two single components (Figure 3d, Table S2), indicating that the *in-situ* conversion of BiVO₄ on InVO₄ can effectively separate the charges and lead to a reduced charge transfer resistance. These results illustrate again that the structure of the InVO₄/BiVO₄ Z-scheme heterojunction composite not only enhances its oxidation and reduction capabilities, but also improves the photogenerated carrier transport efficiency, which is the microscopic origin of the enhanced photocatalytic performance. It is noteworthy that InVO₄/BiVO₄ also exhibits a bigger photocurrent density and smaller charge transfer resistance than InVO₄:BiVO₄, and this is consistent with its enhanced photocatalytic activity, suggesting that InVO₄/ BiVO₄ has a higher separation and transport efficiency of photogenerated carriers owing to the close contact interface, which is the key factor contributing to the enhancement of the photocatalytic activity.

2.4 Mechanism of photocatalytic methane oxidation

Herein, a feasible mechanism of the photocatalytic CH₄ oxidation based on the InVO₄/BiVO₄ heterojunction is proposed in Figure 4. Specifically, the photogenerated carriers in the InVO₄/BiVO₄ heterojunction are transported following a Z-scheme mechanism, where the photogenerated holes in the valence band of InVO₄ are annihilated by the photogenerated electrons in the conduction band of BiVO₄. The photogenerated holes in the BiVO₄ valence band oxidize H₂O to generate OH radicals, which are key reactive species for activating the C-H bonds of CH₄ to generate ·CH₃ radicals. The obtained ·CH₃ radicals then can form CH₃OOH through combining with protons and O₂ (or the ·O₂ radicals generated from photoelectron reduction of O_2). Due to the inherent instability, the CH₃OOH will undergo intramolecular photolytic dehydration to form HCHO or be further reduced to CH₃OH by photogenerated electrons. Another source of CH₃OH is the direct coupling of the produced ·CH₃ and ·OH radicals. Furthermore, the oxidation product CH₃OH can be

Figure 4 (Color online) Schematic diagram of the proposed reaction pathway for CH₄ conversion with InVO₄/BiVO₄ as the photocatalyst.

further oxidized to HCHO by OH radicals or photogenerated holes, representing an alternative pathway for HCHO production.

The origin of ·OH radicals can be confirmed through a series of control experiments conducted using fluorescent probe molecules (coumarin) [41]. As demonstrated in Figure S16, the generation of OH radicals is undetectable in the absence of either BiVO₄ or H₂O. In contrast, when both BiVO₄ and H₂O are present, a bright fluorescent signal resulting from the combination of the fluorescent probe molecules with ·OH radicals is clearly observable. Furthermore, the disappearance of the OH radical signal is apparent when triethylamine (Et₃N) is used as the photogenerated hole annihilator in the BiVO₄ and H₂O reaction system. Based on the above experimental results, it can be preliminarily determined that the ·OH radicals originate from the oxidation of H₂O by the photogenerated holes of BiVO₄. Additionally, it is clearly evident that the fluorescence signal is significantly enhanced when the air in the reaction system is replaced by pure O₂, indicating that the presence of O₂ has a prominent promotion effect on the generation of OH radicals (Figure S17). Notably, the fluorescence signal of OH radicals is further enhanced by using Ag⁺ ions as the electron annihilator instead of O2. It can be inferred that the enhanced fluorescence signal in the O₂ atmosphere is not a result of the reduction of O2 to OH radicals, but rather due to the presence of O₂ consuming the photogenerated electrons and promoting the photogenerated carrier separation, which in turn leads to a higher efficiency of photogenerated holes in oxidizing H₂O to produce ·OH radicals. The origin of the ·OH radicals was further determined by isotope labeling experiments. It is distinctly apparent that only 7-18OH-coumarin (m/z = 164) is observed when $^{16}O_2$ and $H_2^{18}O$ as

feedstocks (Figure 5a), demonstrating that the \cdot OH radicals do indeed originate from the oxidation of H_2O rather than from the photoreduction of O_2 .

The mechanism of C-H bond oxidation was investigated by radical trapping experiments using DMPO as a radical trapping agent. As illustrated in Figure 5b, when H₂O is the only absent component in the detection system, no radical signal can be detected, indicating that the photogenerated holes are insufficient to activate C-H bonds. When H₂O is present but CH₄ is absent, the DMPO-OH signal becomes clearly visible. It is noteworthy that when the system contains both H₂O and CH₄, the signals of DMPO-OH and DMPO-CH₃ can be detected simultaneously [42]. In addition, the signals of ·CH₃ radicals are gradually enhanced with increasing irradiation time, while the signals of ·OH radicals are weakened, which is mainly attributed to the fact that the ·OH radicals consume their own quantity while oxidizing CH₄ to produce ·CH₃ radicals. Furthermore, the radical signal intensities of the InVO₄/BiVO₄ catalyst system are stronger than those of BiVO₄ alone, which is consistent with the photocatalytic activity results, indicating that the OH radical plays a critical role in the CH₄ activation process. Based on the above evidence, it is suggested that the C-H bonds of CH₄ are activated via H-abstraction by ·OH radicals.

The origin of the oxidation product CH₃OH was further explored to elucidate the process of CH₃OH generation. Firstly, isotopic labeling experiments combined with mass

spectrum analysis were conducted to determine the carbon source of the oxidation product. As shown in Figure 5c, the characteristic peaks of $^{13}CH_3OH$ (m/z = 33) can be clearly observed in the mass spectrum when ¹³CH₄ is used as the raw material, whereas only 12 CH₃OH (m/z = 32) is detected when ¹²CH₄ is used as the feedstock. Moreover, distinct splitting peaks ($\delta = 3.12$ and 3.40 ppm) belonging to ¹³CH₃OH can be observed in the proton nuclear magnetic resonance (1H NMR) spectrum of the ¹³CH₄ system (Figure S18) [43]. These results confirm that the carbon source of the oxidation product CH₃OH is derived from CH₄. Thereafter, the reaction paths of O₂ and H₂O were verified by examining the source of oxygen in the oxidation products. It can be clearly observed that $CH_3^{18}OH$ (m/z = 34) is the main product when ¹⁸O₂ and H₂¹⁶O are used as feedstocks, whereas the main product is $CH_3^{16}OH$ (m/z = 32) accompanied by a small amount of CH₃¹⁸OH (m/z = 34) when ¹⁶O₂ and H₂¹⁸O are used (Figure S19). This indicates that the source of oxygen for the oxidation product CH₃OH is primarily derived from O₂ and partially from H₂O. Furthermore, the response mechanism of O₂ molecules was examined by employing EPR measurements. In the system with H₂O and CH₄, only significant OH and CH₃ radical signals are detected. Upon introducing O2 into the system, it is observed that the CH3 OO radical signals are generated (Figure 5d) [44]. Therefore, it can be inferred that O₂ reacts with the ·CH₃ radicals to form the CH₃OO· radicals, and these CH₃OO· radicals then combine with protons aided by electrons to form the

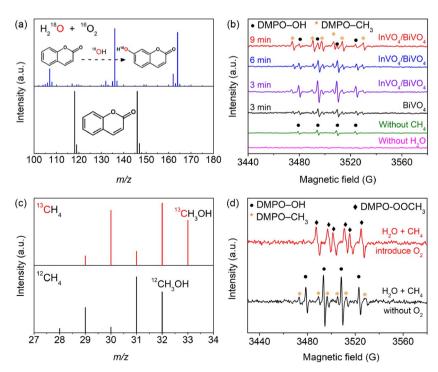


Figure 5 (Color online) (a) Mass spectra of 7-OH-coumarin generated over InVO₄/BiVO₄ with ¹⁶O₂ + H₂¹⁸O as feedstocks. (b) Comparison of EPR intensities of DMPO–OH and DMPO–CH₃ for various photocatalysts at different reaction times. (c) Mass spectra of CH₃OH generated over InVO₄/BiVO₄ from ¹³CH₄ (top) and ¹²CH₄ oxidation (below). (d) EPR spectra of DMPO–OH, DMPO–CH₃, and DMPO–OOCH₃ before and after the introduction of O₂ in the photocatalytic oxidation of CH₄.

CH₃OOH intermediate. The presence of CH₃OOH can be confirmed by ¹³C NMR spectrum (Figure S20). No significant CH₃OOH product can be detected in this reaction system because it is very easily reduced to CH₃OH by photogenerated electrons [45].

The above inferences were fully validated by further control experiments with the annihilating active species (Figure S21). First, almost no oxidation product was detected in the reaction system without H₂O participation. When Et₃N and isopropanol (IPA) were utilized to annihilate the photogenerated holes and OH radicals, respectively, there was a substantial reduction in the amount of the oxidation products in the reaction system, implying that the OH radicals generated through the oxidation of H₂O by photogenerated holes are the key active species for driving the CH₄ oxidation reaction. Additionally, the production of oxidation products was almost completely inhibited when the 'CH₃ radicals were annihilated using TEMPO, suggesting that 'CH₃ is an important intermediate during the generation of oxidation products. When the 'O2 radicals were annihilated by the benzoquinone (PBQ), the generation of the oxidation products was slightly inhibited, implying a non-negligible role of O_2^- in the product formation. After annihilating the photogenerated electrons using Ag⁺ ions in the absence of O₂, a small amount of oxidation product was still produced, inferring that a direct coupling reaction occurs between ·CH₃ and OH radicals to produce CH₃OH, which is consistent with the mass spectrum showing that the oxygen source of the oxidation product is partly derived from H₂O. In the absence of O₂ and Ag⁺ during the reaction, almost no oxidation product was detectable. It suggests there is an indispensable role for O₂ to consume photogenerated electrons in promoting the oxidation of H₂O by photogenerated holes to produce ·OH radicals to activate the C-H bonds of CH₄, in addition to its participation in the generation of oxidation products.

3 Conclusions

In summary, a robust and environmentally friendly InVO₄/BiVO₄ Z-scheme heterojunction was successfully constructed by decorating BiVO₄ onto InVO₄ via a simple cation-exchange strategy, combined with an *in-situ* transformation technology. Structural characterization and XPS measurements unveiled that the *in-situ* growth method endows the InVO₄/BiVO₄ heterojunction with strong interfacial electronic coupling, which significantly accelerates the interfacial charge transfer and enhances the separation efficiency of photogenerated carriers via the Z-scheme pathway, as evidenced by ISI-XPS, EPR and photoelectrochemical measurements. Consequently, the InVO₄/BiVO₄ heterojunction exhibits superior performance in the photocatalytic

CH₄ conversion reaction, achieving an oxygenated hydrocarbon yield of 318.9 µmol g⁻¹ h⁻¹ and a selectivity of 94.5%, far outperforming both pristine BiVO₄ and InVO₄: BiVO₄ counterpart prepared via electrostatic self-assembly. Furthermore, comprehensive control experiments, isotope labeling experiments, and EPR measurements disclosed that CH₄ activation occurs through hydrogen abstraction by ·OH radicals generated from the oxidation of water by photogenerated holes, and the key intermediate CH₃OOH is primarily formed through the combination of ·CH₃ radicals with O₂ and protons.

Acknowledgements This work was supported by the National Key R&D Program of China (2022YFA1502902), the National Natural Science Foundation of China (22475152, U21A20286) and the 111 Project of China (D17003).

Conflict of interest The authors declare no conflict of interest.

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

- Li X, Li C, Xu Y, Liu Q, Bahri M, Zhang L, Browning ND, Cowan AJ, Tang J. Nat Energy, 2023, 8: 1013–1022
- Li Q, Ouyang Y, Li H, Wang L, Zeng J. Angew Chem Int Ed, 2022, 61: e202108069
- 3 Zhou P, Tang S, Ye Z, Navid IA, Xiao Y, Sun K, Mi Z. Chem Sci, 2024, 15: 1505–1510
- 4 Zhang C, Wang J, Ouyang S, Song H, Ye J, Shi L. Sci China Chem, 2023, 66: 2532–2557
- 5 Fletcher SEM, Schaefer H. *Science*, 2019, 364: 932–933
- 6 Blankenship A, Artsiusheuski M, Sushkevich V, van Bokhoven JA. Nat Catal, 2023, 6: 748–762
- 7 Huang Q, Cai J, Wei F, Fan Y, Liang Z, Liu K, Lu XF, Ding Z, Wang S. *J Mater Chem A*, 2024, 12: 21334–21340
- 8 Meng X, Cui X, Rajan NP, Yu L, Deng D, Bao X. Chem, 2019, 5: 2296–2325
- 9 Xu Y, Wang C, Li X, Xiong L, Zhang T, Zhang L, Zhang Q, Gu L, Lan Y, Tang J. *Nat Sustain*, 2024, 7: 1171–1181
- 10 Song H, Meng X, Wang Z, Liu H, Ye J. *Joule*, 2019, 3: 1606–1636
- 11 Xiao Z, Wan Z, Zhang J, Jiang J, Li D, Shen J, Dai W, Li Y, Wang X, Zhang Z. ACS Catal, 2024, 14: 9104–9114
- 12 Wang J, Peng Y, Xiao W. Sci China Chem, 2023, 66: 3252-3261
- 13 Dong GX, Zhang MR, Su K, Liu ZL, Zhang M, Lu TB. *J Mater Chem* 4, 2023, 11: 9989–9999
- 14 Li X, Wang C, Tang J. Nat Rev Mater, 2022, 7: 617-632
- 15 Hu W, Sun Y, Li S, Cheng X, Cai X, Chen M, Zhu Y. CCS Chem, 2021, 3: 2509–2519
- 16 Gunsalus NJ, Koppaka A, Park SH, Bischof SM, Hashiguchi BG, Periana RA. Chem Rev, 2017, 117: 8521–8573
- 17 Wang K, Luo L, Wang C, Tang J. *Chin J Catal*, 2023, 46: 103–112
- 18 Dhandole LK, Kim SH, Moon G. J Mater Chem A, 2022, 10: 19107– 19128
- 19 Zhang R, Shi J, Fu L, Liu YG, Jia Y, Han Z, Yuan K, Jiang HY. ACS Nano, 2024, 18: 12994–13005
- 20 Zhang C, Yan Y, Huang H, Peng X, Song H, Ye J, Shi L. ACS Catal, 2023, 13: 15351–15359
- 21 Bo C, Zhang L, Liu X, Chang H, Sun Y, Zhang X, Tan T, Piao L. Nano Res, 2024, 17: 2473–2480

- Wang P, Shi R, Zhao Y, Li Z, Zhao J, Zhao J, Waterhouse GIN, Wu L, Zhang T. Angew Chem Int Ed, 2023, 62: e202304301
- 23 Fan Y, Jiang Y, Lin H, Li J, Xie Y, Chen A, Li S, Han D, Niu L, Tang Z. *Nat Commun*, 2024, 15: 4679
- 24 Luo L, Gong Z, Xu Y, Ma J, Liu H, Xing J, Tang J. J Am Chem Soc, 2022, 144: 740–750
- 25 Zheng K, Wu Y, Zhu J, Wu M, Jiao X, Li L, Wang S, Fan M, Hu J, Yan W, Zhu J, Sun Y, Xie Y. *J Am Chem Soc*, 2022, 144: 12357– 12366
- 26 Fan Y, Zhou W, Qiu X, Li H, Jiang Y, Sun Z, Han D, Niu L, Tang Z. Nat Sustain, 2021, 4: 509–515
- 27 Zhang P, Li J, Huang H, Sui X, Zeng H, Lu H, Wang Y, Jia Y, Steele JA, Ao Y, Roeffaers MBJ, Dai S, Zhang Z, Wang L, Fu X, Long J. J Am Chem Soc, 2024, 146: 24150–24157
- Yu D, Jia Y, Yang Z, Zhang H, Zhao J, Zhao Y, Weng B, Dai W, Li Z, Wang P, Steele JA, Roeffaers MBJ, Dai S, Huang H, Long J. ACS Sustain Chem Eng., 2022, 10: 16–22
- 29 Pan F, Xiang X, Du Z, Sarnello E, Li T, Li Y. *Appl Catal B-Environ*, 2020, 260: 118189
- 30 Yu X, Zholobenko VL, Moldovan S, Hu D, Wu D, Ordomsky VV, Khodakov AY. *Nat Energy*, 2020, 5: 511–519
- 31 Song H, Meng X, Wang S, Zhou W, Wang X, Kako T, Ye J. J Am Chem Soc, 2019, 141: 20507–20515
- 32 Murcia-López S, Villa K, Andreu T, Morante JR. *Chem Commun*, 2015, 51: 7249–7252

- 33 Wang C, Xu Y, Tang J. Sci China Chem, 2023, 66: 1032-1051
- 34 Liu ZL, Luo HY, Zhang MR, Mu YF, Bai FQ, Zhang M, Lu TB. Chem Eng J, 2024, 491: 151913
- 85 Yang Q, Tan G, Yin L, Liu W, Zhang B, Feng S, Bi Y, Liu Y, Liu T, Wang Z, Ren H, Xia A. Chem Eng J, 2023, 467: 143450
- 36 Kumar A, Prajapati PK, Pal U, Jain SL. ACS Sustain Chem Eng, 2018, 6: 8201–8211
- 37 Lee D, Wang W, Zhou C, Tong X, Liu M, Galli G, Choi KS. *Nat Energy*, 2021, 6: 287–294
- 38 Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. *Adv Mater*, 2017, 29: 1601694
- 39 Low J, Dai B, Tong T, Jiang C, Yu J. Adv Mater, 2019, 31: 1802981
- 40 Zhang W, Mohamed AR, Ong W. Angew Chem Int Ed, 2020, 59: 22894–22915
- 41 Xiang Q, Yu J, Wong PK. J Colloid Interface Sci, 2011, 357: 163–167
- 42 Ab Rahim MH, Forde MM, Jenkins RL, Hammond C, He Q, Dimitratos N, Lopez-Sanchez JA, Carley AF, Taylor SH, Willock DJ, Murphy DM, Kiely CJ, Hutchings GJ. *Angew Chem Int Ed*, 2013, 52: 1280–1284
- 43 Agarwal N, Freakley SJ, McVicker RU, Althahban SM, Dimitratos N, He Q, Morgan DJ, Jenkins RL, Willock DJ, Taylor SH, Kiely CJ, Hutchings GJ. Science, 2017, 358: 223–227
- 44 Jiang Y, Fan Y, Li S, Tang Z. CCS Chem, 2023, 5: 30-54
- 45 Bañares MA, Alemany LJ, López Granados M, Faraldos M, Fierro JLG. *Catal Today*, 1997, 33: 73–83