Downloaded viaTIANJN UNIV OF TECHNOLOGY on May 7, 2025 at 06:42:45 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

ACCOUNTS

H r s . e.0-c-h

pubs.acs.org/accounts

Precise Synthesis of Dual-Atom Catalysts for Better Understanding
the Enhanced Catalytic Performance and Synergistic Mechanism

Di-Chang Zhong, Yu-Chen Wang, Mei Wang, and Tong-Bu Lu*

Cite This: Acc. Chem. Res. 2025, 58, 1379-1391 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations

CONSPECTUS: Dual-atom catalysts (DACs), featuring two catalytic sites in close proximity,
have emerged as a new frontier in energy-related catalysis. Compared with single-atom
catalysts (SACs), DACs have more space to optimize the catalytic performance by changing
the dual-atom catalytic sites and their coordination environments. Through adjusting the
compositions and coordination environments of the metal sites in DACs, it is possible to finely
tune the electronic and geometric properties of active centers, and then the synergistic effects
for facilitating substrates activation and intermediates stabilization can be strengthened or W . Strategies of
optimized, consequently tailoring diverse reaction pathways and achieving various challenging =
catalytic reactions. The most important yet challenging task in DACs studies is the precise
synthesis of DACs, which is crucial to understand the relationship between the catalytic
performance and structure at the atomic level. In most cases, DACs were synthesized via the
pyrolysis of a mixture of metal salts and organic ligands, in which two metals are randomly
distributed in DACs, and it was difficult to control the M---M distance (M = metal ion) and
uniform dispersion of DACs. Hence, developing innovative strategies for the precise synthesis of DACs with definite structures and
high-efficiency catalytic performance is urgently needed.

In this Account, we tentatively summarize the strategies for the precise synthesis of DACs and their applications in activation and
conversion of small molecules such as H,0, CO,, and so on. Focusing on the precise synthesis of DACs, three types of synthesis
strategies have been put forward and systematically introduced. Based on the precise synthesis strategies, the applications of the
resulting DACs with high purity in synergistically activating and converting small molecules have concurrently been discussed,
including the cleavage of C—C bonds, activation and reduction of CO, and H,O, and so on. Attempts have been made to explain
why the catalytic performance of DAC:s for these functions is much higher than what SACs have achieved. Efforts have been made
on revealing the influences of dual-metal site types, the separations between dual metals, their geometry configurations and
coordination environments, as well as the ligand structures on the catalytic performance. Emphasis has been placed on the analysis of
the structure—reactivity relationship and revealing the synergistic mechanism at the molecular level. Finally, perspectives on the
current challenges and future development of DACs have been put forward. We anticipate and believe that this Account will provide
profound insights into the synthesis of structurally defined DACs and give new insights of synergistic catalytic effects in DACs.
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Figure 1. A comparison of the precise synthesis strategies of DACs presented in this Account with the conventional synthesis strategies of DACs.

effect and further enhanced photocatalytic activity for
CO, reduction was rationally designed and synthesized.

e Gong, Y.-N,; Cao, C. Y; Shi, W. J,; Zhang, J. H,; Deng, J.
H,; Lu, T. B,; Zhong, D. C. Modulating the electronic
structures of dual-atom catalysts via coordination
environment engineering for boosting CO, electro-
reduction. Angew. Chem. Int. Ed. 2022, 61, €202215187.*
Three dual Ni catalysts derived from a dinuclear Ni(II)
complex were synthesized via a template synthesis
strategy, where the relationship between electrocatalytic
CO, reduction activity and coordination environments
was revealed.

e Zhao, Q. P,; Shi, W. X,; Zhang, J.; Tian, Z. Y.; Zhang, Z.
M, Zhang, P; Wang, Y,; Qiao, S. Z; Lu, T. B.
Photoinduced synthesis of heteronuclear dual-atom
catalysts. Nat. Synth. 2024, 3, 497—506..> A “navigation
and positioning” strategy for the precise and scalable
synthesis of a series of M;M, (where M is a metal ion)
heteronuclear dual-atom catalysts (DACs) was pro-
posed, in which the photoinduced electron accumulation
at the M, sites results in the capture and reduction of M,
cations close to the M; sites to generate DACs with high

purity.

1. INTRODUCTION

Catalysis is the backbone of the chemical industry. With the
action of catalysts, many chemical products and medicines
have been created by chemical synthesis, which greatly meets
and enriches the life of humankind. Based on the number of
catalytic centers, catalysts could be divided into single-atom
catalysts (SACs), dual-atom catalysts (DACs), and multiatom
catalysts (MACs). Since the pioneering work on SACs by
Zhang et al. in 2011,° the synthesis and applications of SACs
have been extensively explored due to their maximal atomic
utilization.””"" However, it has been also found that the
catalytic performances of SACs are limited in some catalytic
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reactions that need the synergy of two or more catalytic sites.
For these cases, SACs are a bit powerless at achieving such
complex but meaningful catalytic reactions.

Faced with this dilemma, the introduction of a second
catalytic site in the vicinity of the first one in a catalyst could be
an effective strategy to overcome the limitations of SACs, by
which DACs with unique electronic and geometric structures
can be established. DACs may have more advantages in
catalysis compared with SACs. (1) DACs can synergistically
activate and convert small molecules, thus greatly boosting the
catalytic activity. It has been evidenced that for small molecules
such as CO, and H,0O conversion, DACs with dual-atomic
catalytic sites show remarkably enhanced catalytic activity over
the corresponding SACs.” (2) DACs can achieve challenging
catalytic reactions that SACs can not.'” For some complicated
catalytic reactions with multistep reaction processes, SACs may
only accomplish one or two of the steps, while the whole
reaction cannot proceed. In this case, DACs with two catalytic
sites may have the potential to accomplish all the steps and
achieve the reaction, as the two catalytic sites can assume
different functions, which may promote the reaction by a
cascade mode, thus meeting the reaction requirements. (3)
DACs can serve as more ideal models to mimic biological
enzymes,"” which is beneficial for the development of artificial
mimetic enzymes. These advantages, together with those of
high atom utilization efficiency and well-defined structures,
enable DACs to have huge potential in current catalysis
science. DACs have attracted much interest of researchers in
the past and absolutely will attract more in the future.

During the past decades, we have been devoted to studying
the precise synthesis of DACs and their applications in
activation and conversion of small molecules such as CO, and
H,O. In this Account, combining with the pioneering works of
DACs by others, we introduce our progress on the develop-
ment of advanced synthetic tactics for precisely engineering
DAG:s, as well as their catalytic performance. We begin with an
overview of strategies for the precise synthesis of DACs that we
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Figure 2. Representative structures of macrocyclic ligands and corresponding DACs.

have established, then highlight the broad applications of
DAC:s in activation and catalytic conversion of small molecules.
The first strategy is to design and synthesize distinctive
macrocyclic ligands, in which specific dual metals are
introduced to obtain dinuclear metal complexes with high
purity and close metal-metal separations. The second is to
adopt dinuclear metal complexes as precursors to synthesize
DACs via a pyrolysis method, by which the main body
structures of dinuclear metal sites can be preserved, and thus,
DACs with homogeneously dispersed dual-atom sites can be
facilely prepared. The third is the “navigation and positioning”
strategy for the precise synthesis of heteronuclear DACs, in
which the photogenerated electron accumulation at the first
metal site on polymeric carbon nitride (PCN) can capture and
reduce the second metal ion close to the former to generate
heteronuclear DACs with high purity. Finally, we put forward
the current challenges and developments of DACs in the
future. This Account will give guidance for researchers to
precisely synthesize DACs and puts forward new insights of
synergistic catalytic effects in DACs.

2. SYNTHESIS STRATEGIES OF DACs

With two adjacent metal sites, DACs inherit the advantages of
high atom utilization of SACs and also offer the capability to
modulate the electronic structures of metal sites, thus
improving the binding ability of metal sites with reactants.'*"®
Obviously, it is undoubtedly true that the precise synthesis of
DACs is crucial, which is beneficial for analyzing the
structure—performance relationship at the atomic level and
giving guidance for the rational design of efficient catalysts.
Although several synthesis strategies of DACs such as
conventional pyrolysis synthesis have been reported,"*™"" the
pyrolysis process is uncontrollable, and it usually gets a mixture
of DACs with SACs and nanoparticles (Figure 1). The precise
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synthesis of DACs with definite structures and homogeneously
dispersed dual-atomic sites still remains a great challenge.

In the past two decades, we have performed a series of
studies on the precise synthesis and catalysis applications of
DACs.”*~** Our earliest work on DACs for the activation and
transformation of small molecules was reported in 2004, where
we found that a dinuclear copper(II) cryptate can activate and
cleave the C—C bond of acetonitrile at room temperature.’
Then, the synthesis strategies of DACs including macrocyclic
ligand guided synthesis, dinuclear metal complexes template
synthesis, as well as “navigation and positioning” synthesis
were subsequently innovated (Figure 1). By these strategies,
the pairing of dual-atom sites can be precisely manipulated,
obtaining a series of DACs with well-defined structures for
enhanced catalytic performance via dinuclear metal synergistic
catalysis (DMSC) or dual-site synergistic catalysis.

2.1. Macrocyclic Ligand Guided Synthesis

A facile method for the synthesis of DACs is the design and
synthesis of distinctive organic ligands with two separate
binding sites, by which two metal sites can be introduced by
coordination interactions and the confinement effect, to
precisely synthesize dinuclear metal complexes with close
metal—metal separation and suitable configuration (Figure 1).
The synthesized DACs possess well-defined catalytic sites and
maximized utilization of metal atoms, often showing enhanced
catalytic performances over SACs for small molecule activation
and conversion.”>™*® In addition, their structure—performance
relationship and catalytic mechanism are also easy to be
studied. N-heterocyclic cryptands and Robson-type macro-
cyclic compounds are suitable organic ligands for constructing
DACs (Figure 2), as these organic ligands possess multi-
nitrogen atoms, which can usually form very stable dinuclear
metal complexes via multiple chelation interaction between
metal ions and multinitrogen atoms and thus can keep their
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dinuclear structure during long-term catalytic processes. N-
heterocyclic cryptands could be structurally regarded as small
cage molecules formed by connecting two tripodal organic
groups together. The coordination interactions of N atoms and
the confinement of the cage endow the cryptand ligands prone
to combine with two metal ions to form a dinuclear metal
complex. By tuning the metal-metal separations, the
synergistic catalysis effect can be adjusted. In addition, by
changing the metal species, homo/heteronuclear bimetal
complexes can be synthesized, which can show diverse catalysis
activity. Robson-type macrocyclic compounds are approx-
imately planar organic ligands, with which the formation of
dinuclear metal complexes is also based on coordination
interactions and confinements. The resulting dinuclear metal
complexes display planar structures, in which the metal species
can be tuned on purpose, but their metal—metal distances are
fixed in about 3.1 A. Moreover, the z-conjugated systems in
their structures can enhance charge transport and modulate the
electric properties of metal centers, which can further promote
the catalytic efficiency.

Since the first N-heterocyclic cryptand synthesized by Lehn
et al. in the 1970s,”° much effort has been devoted to
developing macrocyclic ligands with diverse functions. In 2004,
we synthesized a dinuclear Cu(Il) N-heterocyclic cryptate of
[Cu,L'](ClO,), by the reaction of Cu(ClO,),-6H,0 and L' in
methanol (Figure 2, complex 1)." The successful synthesis of
[Cu,L'](ClO,), was confirmed by single-crystal X-ray
diffraction and electrospray ionization mass spectrometry
(ESI-MS) measurement. Interestingly, when [Cu,L'](ClO,),
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was dissolved in acetonitrile and stood at room temperature,
[Cu,L'](ClO,), showed an interesting activation and cleavage
of the C—C bond of CH;CN, resulting in a stable cyanide-
bridged dinuclear Cu(1I) complex [Cu,L'(CN)](ClO,);. The
reaction mechanism involving a unique interaction between
Cu(Il) and CH,CN was revealed in our subsequent work.*"
The chiral nitrile (S)-(+)-2-methylbutyronitrile was employed
to react with [Cu,L'](ClO,),. The results demonstrated that
the N atom of CH;CN first binds to one Cu(II) in [Cu,L']*,
and the other Cu(II) likely interacts with the filled 7-orbital of
the sp-hybridized C atom of CH;CN. This interaction leads to
electron flow from the 7-bond to the Cu' atom, increasing the
“leaving ability” of the cyanide and enhancing the electro-
philicity of the alkyl C atom. Consequently, the C—C bond
undergoes cleavage via an Sy2-type mechanism in the presence
of adventitious water, forming (R)-(—)-2-butanol with
opposite chirality and a [CuL'(CN)]*" complex (Figure 3).
We further synthesized a dinuclear Co(II) complex of
[Co,(OH)L?](ClO,); on the basis of a similar N-heterocyclic
cryptand ligand by the reaction of Co(ClO,),-6H,0 with L?
under an Ar atmosphere (Figure 2, complex 2).” With the
coordination interactions and confinement effect of L? two
Co(1I) are restricted in the cavity of L* with a Co-+-Co distance
of ~5.8 A. We found that [Co,(OH)L*](ClO,); has strong
binding to CO, in acetonitrile. Exposed in air for less than 30 s,
a carbonate-bridged complex of [Co,L*(u-0,C0)](ClO,),
was formed.”’ This observation indicates that [Co,(OH)L?]-
(ClO,); may show great potential in CO, reduction.
Photocatalytic experiments showed that this complex really

https://doi.org/10.1021/acs.accounts.4c00855
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displays exceptionally high photocatalytic activity for the
conversion of CO, to CO, achieving a turnover number
(TON) of 16 896 and a turnover frequency (TOF) of 0.47 s,
These values significantly surpass those of the related
mononuclear Co(II) complex (Figure 4a) and the most
reported dinuclear complexes. The superior catalytic activity of
[Co,(OH)L?](ClO,); can be attributed to the dinuclear metal
synergistic catalysis (DMSC) effect between two Co(II) ions,
where one Co(II) acts as the primary catalytic site for CO,
binding and reduction, while the other serves as an auxiliary
catalytic site facilitating the cleavage of the C—OH bond in the
[O=C—OH]* intermediate and subsequent removal of the
—OH group. The more readily the C—OH bond is eliminated,
the faster the conversion of CO, to CO occurs. Density
functional theory (DFT) calculations reveal that the C—OH
bond cleavage in the [0O=C—OH]* intermediate is the rate-
determining step (RDS) for the whole CO, reduction reaction.
For [Co,(OH)L*](ClO,);, the DMSC effect between two
Co(II) promotes the C—OH bond cleavage in the [O=C—
OH ¥ intermediate, thus exhibiting a substantially lower energy
barrier than its mononuclear counterpart (Figure 4b). Based
on the above catalytic mechanism, considering the stronger
affinity of Zn(1I) to the —OH group than that of Co(II), we
speculated the DMSC effect between Co(II) and Zn(1I) would
be stronger than that between Co(II) and Co(Il), and the
photocatalytic activity of CoZn heterodinuclear complex may
further enhanced. Therefore, we rationally designed and
synthesized a heterodinuclear CoZn complex of [CoZn(OH)-
L*)(ClO,); (Figure 2, complex 3).% As anticipated, [CoZn-
(OH)L?](ClO,); exhibited a much enhanced photocatalytic
activity for CO, reduction to CO, with a TON of 65 000 and a
TOF of 1.8 s/, 4-fold and 19-fold higher than those of the
homodinuclear Co(II) and Zn(II) complexes. DFT calcu-
lations indicate that the DMSC effect between Co(II) and
Zn(1l) is really strengthened compared with that between
Co(II) and Co(II) as well as that between Zn(II) and Zn(II).
The strengthened DMSC effect significantly reduces the
energy barrier of the rate-determining step of the CO,-to-
CO reduction reaction, leading to a substantial increase in
photocatalytic activity for CO, reduction.

Inspired by the above results, we further designed and
synthesized a dinuclear Co(II) complex of [Co,(u-OH)-
(BPMAN)](ClO,); containing an —OH group (BPMAN =
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2,7-[bis(2-pyridyl-methyl)aminomethyl]-1,8-naphthyridine). It
is well-known that —OH groups are extensively observed in
natural enzymes, which play important roles in enzyme
catalysis. In [Co,(u-OH)(BPMAN)](ClO,), the N atoms in
BPMAN are capable of coordinating with two Co(II) ions,
with a Co-+-Co distance of 3.3 A. This catalyst not only exhibits
DMSC for CO, photoreduction but also possesses an excellent
capture capacity to CO, due to the existence of the —OH
group. As a result, this dinuclear Co(II) complex exhibits a
much high photocatalytic activity for CO, reduction to CO.*
Additionally, a mononuclear Ni complex featuring a S,N,-
tetradentate ligand was synthesized for photocatalytic CO,
reduction, which includes two uncoordinated pyridine
pendants. These pendants can capture a Mg** ion as a
Lewis-acid cocatalytic site, leading to the generation of a
synergistic catalysis effect for the photocatalytic CO, reduction
to CO.” Beside CO, HCOO™ can also be produced in
photocatalytic CO, reduction by dinuclear metal complexes.
Robert et al. synthesized a dinuclear Co(II) complex bearing a
bi-quaterpyridine ligand, which can selectively photocatalyze
CO, reduction into HCOO™ or CO via DMSC between two
Co(II) sites, and the selectivity can be steered toward HCOO™
or CO simply by changing the acid cosubstrate.”

In addition to N-heterocyclic cryptands, we also designed
and synthesized a series of planar multinitrogen organic ligands
for constructing dinuclear metal complexes. Utilizing the ligand
guided synthesis strategy, we obtained a dinuclear Co(II)
complex of [Co,(L*),(H,0),(NO;),](NO,), (Figure 2,
complex 4).”* Bach Co(II) ion is six-coordinated with four
N atoms of two L? ligands in the basal plane and two O atoms
from one H,O and one NO;~ at the axial positions. Two L?
bridge two Co(II) ions with a Co--Co distance of 4.163 A.
Notably, this dinuclear Co(1I) complex exhibits significantly
elevated photocatalytic activity for CO, reduction to CO, with
a TON of 14457 and a TOF of 0.40 s™, much higher than
those of the corresponding mononuclear Co(II) complex
(Figure Sa). Control experiments and theoretical calculations
have demonstrated that the superior catalytic activity of the
dinuclear Co(II) complex is attributed to the indirect DMSC
effect between two Co(II) ions. That is, one Co(II) binds one
CO, molecule, and the other coordinates with one H,O
molecule, which is able to not only stabilize the adsorbed CO,
molecule by an intramolecular hydrogen bond but also provide

https://doi.org/10.1021/acs.accounts.4c00855
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Scheme 1. The Main Contents of This Account, with Direct (Top) and Indirect (Bottom) Synergistic Catalytic Pathways

a proton to promote the cleavage of the C—O bond in the
[O=C—OH]* intermediate. Additionally, the energetically
feasible one-step two-electron transfer process by the Co,"
intermediate to afford the Co,™(C0O,>") intermediate and the
fast mass transfer closely related with the catalyst planar
structure also contribute to the enhancement of the photo-
catalytic CO, reduction activity (Figure Sb).

Robson-type compounds are also a type of organic ligand
benefiting from coordination interactions and the confinement
effect to immobilize two metal ions to construct dinuclear
metal complexes. Very recently, we have designed a series of
dinuclear Co(II) complexes based on Robson-type ligands
with different numbers of —COOH groups through the
macrocyclic ligand guided synthesis strategy (Figure 2,
complexes 5—8).”> The results of photocatalytic CO,
reduction experiments show that all these dinuclear Co(II)
complexes possess photocatalytic activity for CO, reduction,
producing a large amount of CO and a trace amount of H,.
With the increase of the number of —COOH groups in
dinuclear Co(II) complexes, the amount of CO generated
markedly increases. The results of control experiments and
DFT calculations show that the kinetics of CO, reduction
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reactions are highly dependent on the rate of electron and
proton transfer to the reaction intermediates adsorbed at the
catalytic sites. The activation energy of the RDS in CO,
reduction to CO via intramolecular proton transfer (AG* =
8.09 kcal/mol) is much lower than that via intermolecular
proton transfer (AG” = 16.99 kcal/mol), indicating that an
intramolecular proton transfer pathway is more favorable for
CO, reduction to CO. More carboxylic groups in a dinuclear
catalyst endow the catalyst with more proton relays, thus
accelerating the proton transfer and boosting the photo-
catalytic CO, reduction.

Besides homogeneous catalytic systems, the observed
DMSC effect in dinuclear metal complexes can also be
introduced into heterogeneous catalytic systems, which not
only boosts the catalytic activity but also improves the
recyclability and reuse of catalysts, aiming at practical
applications. For instance, by heterogenization of the dinuclear
Co(I) complex of [Co,(OH)L*](ClO,); via a covalent
linkage, we successfully synthesized two new porous polymers
of Co,-P1 and Co,-P2, which exhibited ultrahigh catalytic
activity for photochemical CO,-to-CO conversion due to the
existence of the DMSC effect between two Co sites.”” Besides,

https://doi.org/10.1021/acs.accounts.4c00855
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we also developed a series of efficient catalysts of metal—
organic frameworks (MOFs) and hydrogen-bonded organic
frameworks (HOFs) containing dual-metal catalytic sites for
synergistically boosting CO, reduction and hydrogen evolution
reaction (HER).**™* To endow dinuclear metal complexes
with more functions, we also composited them with semi-

40—43 s :
or coordination inter-

conductors through electrostatic
actions** to obtain a series of composite photocatalysts with
photosensitivity, photoreduction, and photooxidation func-
tions.

In addition to CO, reduction and HER, dinuclear metal
complexes have also shown catalytic activity for N, reduction.
It has been found that DACs not only enable the efficient
adsorption of N, in a stable side-bridge mode but also facilitate
the activation and conversion of N, by modulating the
geometric and electronic structures of active sites.”> For
example, Schneider et al. synthesized a dinuclear rhenium
complex featuring a N,-bridged structure. With the help of
visible light, this complex demonstrated remarkable catalytic
performance in the transformation of N, with benzoyl chloride
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to benzamide and benzonitrile, achieving an overall yield of
61%.%

The above discussion has clearly demonstrated that the
design and selection of organic ligands are crucial for the
synthesis of dinuclear metal complexes, which significantly
influence their stability and catalytic activities. In N-
heterocyclic cryptands, the two tris(2-aminoethyl)amine units
linked by three phenyl groups can encapsulate two metal ions
within its cage to form stable DACs, with metal—metal
separations of 5.8 A. Such separation allows two metal sites to
bind to the *COOH intermediate simultaneously, which can
dramatically weaken and activate the C—OH bond of *COOH
through a direct synergistic catalytic pathway (Scheme 1), thus
significantly reducing the energy barrier of the CO,-to-CO
reduction reaction and leading to a substantial increase in
photocatalytic activity compared to that of corresponding
SACs. Replacing one Co in [Co,(OH)L?*]" (complex 2) with
Zn produces [CoZn(OH)L*]* (complex 3); 3 exhibits a more
enhanced photocatalytic activity for CO, reduction to CO than
2 due to the stronger Zn—OH interaction with the *COOH
intermediate. When the metal—metal separations are shortened
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to 4.1 A in complex 4, and 3.1 A in complexes 5—8, such short
distances cannot allow the *COOH intermediate to insert into
the space of two metal sites; thus, an indirect synergistic
catalytic pathway (Scheme 1) is employed by two metal sites,
where one metal site binds a CO, molecule and the other
coordinates with a H,0O molecule. The coordinated H,O is
able to not only stabilize the adsorbed CO, molecule via
hydrogen bonding but also provide protons to promote the
cleavage of the C—OH bond in the [0O=C—OH]*
intermediate, boosting the activation and conversion of CO,.
In all, the precise synthesis of DACs can be readily achieved by
the ligand directed synthesis strategy, where the key is the
delicate design and successful synthesis of desired organic

ligands.
2.2. Dinuclear Metal Complexes Template Synthesis

High-temperature pyrolysis is the most common method for
preparing atomically dispersed catalysts, including SACs,
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DACs, and so on.*7°° A number of SACs have been
synthesized by the pyrolysis of metal salts, mononuclear
metal complexes, MOFs, or MOF nanosheets, where the metal
sites in the precursor matrix can be transferred and anchored
on the supports.”’ ™" In contrast, the precise synthesis of
DACs by the conventional pyrolysis method is slightly
complicated and difficult, as the resulting catalysts usually
contain a mixture of SACs, DACs, and nanoparticles and the
M---M distances in DACs are also hardly controlled. Dinuclear
metal complexes template synthesis is defined as using
dinuclear metal complexes as precursors, which are first
adsorbed on the 2D materials or confined in 3D porous
materials and then pyrolyzed at certain temperatures. Different
from the conventional pyrolysis method, in dinuclear metal
template synthesis, the coordination and confinement of
organic ligands can prevent dual-metal site migration and
aggregation; thus, it has more opportunity to obtain DACs
with dual-atom pairs homogeneously dispersed. Obviously, the

https://doi.org/10.1021/acs.accounts.4c00855
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design and selection of dinuclear metal complex precursors are
important, where the distances between two metal centers
should be considered. The high thermal stability of dinuclear
metal complexes is also necessary to make sure the main body
structures of dual-metal sites are preserved during pyrolysis
processes. In addition, the pyrolysis conditions such as the
temperature, atmosphere, etc., also need to be optimized for
the precise synthesis of DACs via dinuclear metal complexes
template synthesis.

Recently, we and others used the dinuclear metal complexes
template synthesis strategy for the precise synthesis of
DACs,"*">*™5% in which the coordination bonds between
the metal sites and organic ligand in dinuclear metal complexes
can really effectively stabilize the dual-metal pair, thus
preventing the aggregation of metal atoms during the pyrolysis
process, which enables the precise and controllable synthesis of
DACs. Further adjusting the local coordination environments
of the metal sites, the catalytic performance can be optimized.

In 2022, we carried out the pyrolysis of a dinuclear Ni(II)
complex with carbon black and dicyandiamide at 700, 800, and
900 °C, respectively, affording three Ni-based DACs (Ni,-N,,
Ni,-N;C,, and Ni,-N;C,) with slightly different coordination
environments around the dual-atom Ni, sites (Figure 6a).*
The high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) images clearly show
paired bright dots with a distance of ~3.1 A, corresponding to
dual Ni, atoms (Figure 6b). The Fourier transformation
extended X-ray fine structure (FT-EXAFS) spectra and X-ray
photoelectron spectroscopy (XPS) spectra demonstrate that
there are both Ni—N and Ni—C bonds in Ni,-N;C,, Ni,-N,C,,
and Ni-N,C,, while there are only Ni—N bonds in Ni,-N,
(Figure 6¢). Ni,-N;C, displays the best electrocatalytic activity
for CO, reduction, with the highest CO Faradaic efliciency of
98.9% (Figure 6d,e). DFT calculations demonstrate that
regulating the coordination environments can modulate the
electronic structures around the Ni sites, which improves the
binding energies to *COOH and *CO intermediates. For Ni,-
N;C,, the proper binding energies of Ni sites to *COOH and
*CO facilitate the formation of *COOH and the release of
*CO, resulting in a minimal reaction free energy and the best
catalytic performance. In the same way, we used another
dinuclear Ni complex as a precursor to pyrolyze with carbon
nanotubes and dicyandiamide in Ar, obtaining a DAC of Ni,-
NCNT (NCNT N-doped carbon nanotube). High-
resolution transmission electron microscopy (HRTEM) and
scanning electron microscopy (SEM) images reveal that Ni,-
NCNT inherited the morphology of CNTs, with a purity of
Ni, DACs of 90.1%.>” Ni,-NCNT exhibits superior activity
and selectivity for electrocatalytic CO, reduction to CO, with a
partial current density for CO (jco) of 76 mA cm™ and a
Faradaic efficiency of 97%. The jco mass activity of Ni,-NCNT
is 2.3 times higher than that of the corresponding Ni;-NCNT.
DFT calculations reveal that the synergistic catalysis between
two Ni atoms contributes to lowering the reaction free energy
for *COOH formation, thus greatly boosting the electro-
catalytic CO, reduction. Besides dinuclear metal complexes,
MOFs were also used as templates for the synthesis of DACs
by pyrolysis, where the first is the introduction of one or two
metals into the pores of MOFs. The subsequent pyrolysis of
treated MOFs can fabricate DACs.*” ™%
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2.3. “Navigation and Positioning” Synthesis

As discussed above, high-temperature pyrolysis still faces
challenges for the control of purity and M---M distance during
the synthesis of DACs. We recently developed a unique
“navigation and positioning” strategy for the precise and
scalable synthesis of a series of heteronuclear DACs of ZnRu-,
NiRu-, ZnCu-, CoCu-, NiCu-, and BiCu-PCN on a polymeric
carbon nitride (PCN) support (Figure 7a). This strategy
involves two steps of pyrolysis and light irradiation processes.
First, M;-PCN SACs were synthesized by directly calcining
urea and metal salts. Upon photoexcitation, negative charge
accumulation occurs at the M, nucleation site in M;-PCN,
which can attach the secondary metal ion of M, around the M,
site, generating a series of heteronuclear DACs of M;M,-PCN
with over 80% purity.” For ZnRu-PCN DACs, HAADF-STEM
images indicate the homogeneous dispersion of Ru and Ni
atoms on the PCN support (Figure 7b). The absorption edge
energy of Ru K-edge XANES confirms the Ru oxidation state is
between +2 and +4 (Figure 7c). Atomic resolved electron
energy-loss spectroscopy further substantiates the presence of
Ru and Ni atoms within the dual-atom sites (Figure 7d).
Among these obtained heteronuclear DACs, ZnRu-PCN
shows extraordinary catalytic activity toward the photocatalytic
hydrogen evolution reaction, with a H, evolution of 4138
mmol/gg, in 12 h, four times higher than that of Ru-PCN
(Figure 7e). DFT calculations indicate the synergistic effect
between the Ru—Zn atoms. As shown in Figure 7f, the AGyx«
value for Ru—Zn—H was 0.195 eV, which is favorable for the
HER process. This strategy underlines a promising and
universal approach for the precise synthesis of highly purified
DACs by a simple photoinduced charge accumulation and
navigation process, which has been employed to precisely
synthesize DACs by other researchers. For example, Zhu et al.
used this strategy for the precise synthesis of PtCo DAC on
CN for photocatalytic hydrogen evolution, in which the Co-
SAC was initially anchored on the CN support, and
photoinduced electron accumulation at the Co sites resulted
in the capture and reduction of Pt metal ions near the Co sites
to obtain PtCo DAC with high purity.**

3. CONCLUSION AND OUTLOOK

In this Account, we have discussed the precise synthesis
strategies of DACs and their advancements in energy
conversion from a molecular perspective. It has been observed
that DACs possess more advantages over SACs in the
activation and transformation of small molecules owing to
the existence of the DMSC effect, which endows them with
higher catalytic activity and product selectivity than SACs.
With the well-defined structures of DAC:s, it is beneficial to
explore the activity—structure relationship. Despite the
remarkable progress that has been made in the synthesis and
applications of DACs, the following key challenges should be
further considered and addressed.

First, the design of ligand architecture is of great importance
for precise syntheses of DACs based on dinuclear metal
complexes, as it guides the formation of dinuclear metal
complexes. With the rational combination of metals and
directing ligands, dinuclear metal complexes with suitable M---
M distances and enhanced catalytic activity are expected to be
precisely synthesized. However, the influence of metal species
and M--M distance in DACs on the catalytic activity and
production selectivity has not been thoroughly investigated, as
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the DMSC effect of DACs is close related to the M:-M
distance in DACs. Moreover, the synthesis of heterometallic
dinuclear complexes is still a great challenge. In addition,
though dinuclear metal complexes template synthesis is a
simple and effective approach for the precise synthesis of
DAC:s, the precise synthesis of highly loaded DACs remains a
significant challenge, as SACs and clusters often coexist with
DACs. To address this issue, it is essential to meticulously
control the conditions in pyrolysis, including the reaction
temperature, the ratio of dinuclear metal complex and support,
and so on, aiming at preventing the metals from aggregating.

Second, the determination of definite structures of dinuclear
metal complexes and DACs needs to be further investigated.
For homonuclear bimetal complexes, single-crystal X-ray
diffraction, electrospray ionization mass spectrometry (ESI-
MS), and liquid chromatography—mass spectrometry (LC-
MS) are good characterization techniques. These techniques
not only provide precise solid structures of bimetal complexes
but also reveal their existence in solution, which is essential for
checking the stability of the metal complexes during the
catalytic process. However, for heteronuclear bimetal com-
plexes, it is difficult to differentiate metal ions with similar ion
radii by single-crystal X-ray diffraction analysis; thus, the
precise determination of these complexes should combine with
the results of other characteristic techniques such as X-ray
photoelectron spectroscopy, elemental analysis, and so on,
which can provide useful information to support the crystal
structure obtained from X-ray diffraction. Actually, the most
challenging is the structural determination of DACs synthe-
sized by the pyrolysis method, which mainly relies on HAADEF-
STEM and X-ray absorption spectroscopy (XAS). However,
neither of these techniques can provide direct evidence for the
existence of dual-metal active sites. In HAADF-STEM imaging,
the projection of dual-atom pairs is random, making it
extremely difficult to accurately distinguish dual-atom pairs
and single atoms on the supports. In some cases, scattering
clusters or nanoparticles may be overlooked, which usually
misleads the analysis of XAS data. Moreover, the structural
information obtained from HAADF-STEM is the local
environment in DACs. In this case, the analyzed structure—
activity relationships may be inaccurate or even false. To
accurately reveal the catalytic pathways and reaction
mechanism, it is essential to develop advanced in situ
characterization techniques, such as in situ scanning trans-
mission electron microscopy (STEM), in situ XAS, and in situ
Fourier transform infrared and Raman spectroscopies, which
can provide valuable information on the reaction intermediates
and give solid evidence for mechanism studies.

Third, the applications explored for DACs are limited. Most
current researches of DACs focus on the activation and
conversion of common small molecules such as CO,, N,, O,,
H,O, etc., where DMSC between two metal sites can be
generated and exploited for activity enhancement. Based on
the reported catalytic mechanism of DACs for CO, reduction,
the two metal sites usually play different roles in boosting the
catalytic reactions, either with direct synergistic catalysis or
indirect synergistic catalysis. In comparison to SACs, DACs
also show superiority in producing C,, products during CO,
reduction. The formation of C,, products usually consists of
the formation of *CO/*CHO intermediates and C—C
coupling between *CO/*CHO intermediates. DACs with
two sufficiently close catalytic sites benefit the C—C coupling
between two *CO or *CHO intermediates to generate C,,
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products. In addition, DACs with well- defined structures can
also let us understand how the C—C coupling occurs between
*CO/*CHO intermediates. However, so far we still do not
know how short of a distance between two catalytic sites will
trigger the C—C coupling reaction. Besides the activation and
conversion of the small molecules mentioned above, the close
distance between two metal sites also enables them to catalyze
some reactions by a cascade mode, especially for heteronuclear
bimetal catalysts where two different metal sites can act with
different catalytic functions. Therefore, more renewable
energy-driven organic synthesis reactions that can generate
high-value-added products by DACs are expected. This will be
a new direction for the application of DACs.

In all, despite that several significant points of DACs should
be addressed, as a type of emerging catalyst with more
advantages over SACs, DACs will demonstrate more extensive
applications in the future. We believe DACs will become the
new research hotspot following SACs.
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