ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environment and Energy

journal homepage: www.elsevier.com/locate/apcatb

Incorporating a binuclear cobalt polymer into mesoporous TiO₂ to construct a new Z-scheme heterojunction for boosting artificial photosynthesis

Yun-Nan Gong, Shan Wang, Hui-Jun Dong, Jian-Hua Mei, Di-Chang Zhong, Tong-Bu Lu

Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China

ARTICLE INFO

Keywords: Z-scheme heterojunction Mesoporous TiO₂ Binuclear cobalt complex Artificial photosynthesis

ABSTRACT

The construction of photocatalysts with Z-scheme heterojunction structures has been regarded as an effective strategy to enhance catalytic efficiency in artificial photosynthesis. However, the reported Z-scheme heterojunctions usually show small interfacial contact area, which are unbeneficial for highly efficient charge separation. Herein, a host-guest strategy was developed to precisely construct Z-scheme heterojunctions, with which a polymer (Co₂-P) containing binuclear cobalt catalytic centers was incorporated into the pores of mesoporous TiO₂, affording a new Z-scheme heterojunction of Co₂-P@TiO₂ with surrounding contact interfacial between Co₂-P and TiO₂. As a result, the resulting Co₂-P@TiO₂ heterojunction possesses large interfacial contact areas, and thereby exhibits an outstanding photocatalytic activity for the reduction of CO₂ to CO with H₂O as the electron donor. The CO production rate reaches as high as 139.2 μ mol g⁻¹ h⁻¹, which is 4.0, 4.2 and 3.1 times higher than the pristine TiO₂, Co₂-P, and a Z-scheme heterojunction of Co₂-P/TiO₂ conventionally prepared, respectively. Systematic studies demonstrate that the encapsulation of Co₂-P into the pores of mesoporous TiO₂ greatly accelerates charge separation and electron transfer, thus accounting for its enhanced photocatalytic activity. This study paves a new way to design efficient catalysts for artificial photosynthesis.

1. Introduction

The excessive emission of carbon dioxide (CO2) has resulted in serious environmental problem [1,2]. Inspired by the natural photosynthesis, researchers believe that the conversion of CO2 and H2O into carbohydrates and O2 by solar energy could be a promising approach to alleviate the environmental issue caused by the greenhouse gas CO2 [3-5]. Nevertheless, it is still daunting to combine CO2 reduction and H₂O oxidation with high catalytic efficiency in one photocatalytic system due to the inherent chemical inertness of both CO2 and H2O molecules [6-11]. Recently, various strategies have been developed to construct photocatalysts to achieve artificial photosynthesis [12-16], among which the fabrication of heterojunctions from different semiconductors (SC) is regarded as an effective strategy, as the heterojunction photocatalysts usually exhibit enhanced separation of photogenerated electron-hole pairs over single component [17-21]. Among heterojunction photocatalysts, Z-scheme heterojunction photocatalysts possess a unique advantage over other heterojunctions because of their improved position of both conduction and valence bands, not only hindering the rapid electron-hole recombination, but also enhancing the oxidation and reduction abilities [22–25]. At present, three main strategies have been developed to construct Z-scheme heterojunctions. The first one is to load small semiconductor nanoparticles on the surface of bulky semiconductors. The second one is to integrate two semiconductor nanoparticles with protected organic ligands. The third one is to compose semiconductor nanoparticles with Janus configuration. However, these Z-scheme heterojunctions often show small interfacial contact area (Scheme 1a), which are unbeneficial for accelerating charge separation [19–25]. Therefore, it is highly desired to develop efficient Z-scheme heterojunction photocatalysts for greatly promoting charge separation toward artificial photosynthesis.

Porous materials featuring high porosity and surface area, has attracted tremendous attention in photocatalytic CO₂ reduction. They are not only favorable to the transport of substrates and products, but also have capability for the encapsulation of functional molecules inside the pores to form composites to greatly facilitate charge separation and

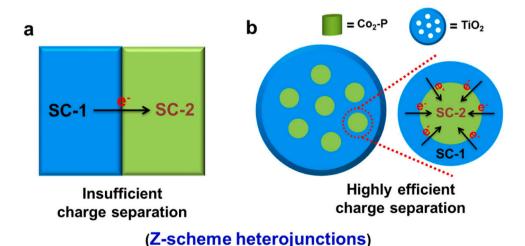
E-mail addresses: dczhong@email.tjut.edu.cn (D.-C. Zhong), lutongbu@tjut.edu.cn (T.-B. Lu).

^{*} Corresponding authors.

further to enhance photocatalytic activity [26–30]. For example, Deng and coworkers prepared a series of metal-organic framework (MOF)-based composites by growing TiO_2 inside different pores of chromium-based MOFs for CO_2 photoreduction, which exhibit significantly enhanced catalytic activity for the reduction of CO_2 to CO and CH_4 compared with the pristine MOFs and TiO_2 [29]. Chen et al. developed a new catalytic system by encapsulating the cationic photosensitizer $[Ru(phen)_3]^{2+}$ (phen = 1,10-phenanthroline) into the pores of an anionic MOF via electrostatic interaction, which shows an outstanding photocatalytic activity for the reduction of CO_2 to CO with triethanolamine (TEOA) as the electron donor [30]. Although many efforts have been devoted in this field, to our knowledge, the encapsulation of functional units into the pores of porous materials to construct Z-scheme heterojunctions for CO_2 photoreduction has not been documented so far.

As an important porous semiconductor, mesoporous TiO₂ has been recognized its great potential in photocatalysis due to its non-toxicity, low cost and high stability [31-34]. Although the photogenerated electrons and holes are prone to fast recombine in single mesoporous TiO₂, leading to low photocatalytic efficiency, mesoporous TiO₂ might be an ideal model for incorporating functional units into its pores to construct Z-scheme heterojunctions to improve charge separation efficiency. Herein, for the first time, we incorporated a polymer (Co₂-P) containing binuclear cobalt catalytic centers into the pores of mesoporous TiO2 through host-guest strategy, to fabricate a Z-scheme heterojunction photocatalyst of Co2-P@TiO2 with surrounding contact interfacial between Co₂-P and TiO₂ for artificial photosynthesis (Scheme 1b). Strikingly, the resulting Co₂-P@TiO₂ heterojunction exhibits an excellent photocatalytic activity for the reduction of CO2 to CO with H2O as the electron donor, in absence of any additional photosensitizer and sacrificial agent. The CO generation rate of Co2-P@TiO2 is 4.0, 4.2 and 3.1 times higher than the pristine TiO2, Co2-P and a Z-scheme heterojunction of Co₂-P/TiO₂ conventionally prepared, respectively. The significantly enhanced photocatalytic performance of Co2-P@TiO2 heterojunction can be attributed to the improved charge separation efficiency, as demonstrated by the results of a series photoelectrochemical experiments.

2. Experimental section


2.1. Materials and equipments

All chemicals were commercially available and used without further purification. Powder X-ray diffraction (XRD) patterns were recorded on

D8 ADVANCEX-Ray Diffractometers with Cu K α radiation ($\lambda = 1.54 \text{ Å}$). Nitrogen sorption measurements were conducted at 77 K using a multistation specific surface micropore and vapor adsorption analyzer (BEL-SORP-Mas, Microtrac BEL, Japan). Solid-state UV-vis absorption spectra were obtained on a UV-vis spectrophotometer (UV-3600, Shimadzu, Japan). Photoluminescence (PL) spectra were measured with an F-4600 fluorescence spectrometer. X-ray photoelectron spectroscopy (XPS) measurements were conducted by using an X-ray spectrometer (ESCA-LAB 250 Xi spectrometer, Thermo Scientific, USA) with Al $K\alpha$ as the excitation source. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping were acquired on a FEI-Quanta FEG 250 scanning electron microanalyzer. High-resolution transmission electron microscopy (HR-TEM) was conducted on transmission electron microscope with a LaB6 Gun (Tecnai G2 Spirit TWIN and Talos F200 X, FEI, USA) at an acceleration voltage of 120 kV. Raman spectra were recorded on a high-resolution laser confocal fiber Raman spectrometer (HORIBA EVOLUTION, HORIBA Jobinyvon, France). Liquid chromatography mass spectrometry (LC-MS) was conducted using a Waters LC-MS system (UPLC I Class/Xevo G2-S QTOF, United States). The Co content was quantified by an inductively coupled plasma mass spectrometer (ICP-MS, iCAP RQ, Germany). The isotopes of ¹³C for CO and ¹⁸O for O₂ were analyzed using mass spectrometry (HPR-20 QIC). The photocurrent, Mott-Schottky plots, and electrochemical impedance spectroscopy (EIS) measurements were performed on a CHI 660E electrochemical workstation. Fourier transform infrared spectroscopy (FT-IR) and in situ FT-IR spectra were recorded on Nicolet iS50 IR spectrometers, and samples were tableted with KBr as support. Electron paramagnetic resonance (EPR) measurements were performed on an electron paramagnetic resonance spectrometer (Bruker, EMXplus-6/1, Germany). The catalytic product in gaseous phase of the reaction system was analyzed by gas chromatography (GC-2014+ATF, 230 C, Shimadzu, Japan) equipped with two automated gas sampling valves, which contain a thermal conductivity detector (TCD) and a flame ionization detector (FID).

2.2. Synthesis of mesoporous TiO2

Mesoporous TiO_2 was synthesized according to the literature [35]. Typically, 1.6 g Pluronic F127, 2.0 mL AcOH, and 3.0 mL concentrated HCl were added to 30 mL tetrahydrofuran (THF), which was stirred for 10 min. Afterwards, 3.0 mL tetrabutyl titanate and 0.20 mL H_2O were added dropwise into the above solution, which was stirred vigorously. The obtained golden-yellow solution was transferred to oven to evaporate THF at 45 °C for 24 h to form monomicelle gel, which was added

Scheme 1. Schematic representation of (a) the reported Z-scheme heterojunctions with insufficient charge separation and (b) the new Z-scheme heterojunction with highly efficient charge separation.

into a 50-mL Teflon-lined autoclave and heated at 70 °C for 24 h. After cooling down to room temperature, the precipitates were collected by centrifugation and dried. Finally, the mesoporous $\rm TiO_2$ microspheres were obtained after pyrolyzing in a tubular furnace under $\rm N_2$ at 350 °C for 3 h, following by calcining in air at 400 °C for 3 h.

2.3. Synthesis of binuclear cobalt complex (Co₂-Br)

First, the 2,6-diformyl-4-bromophenol was synthesized according to the literature [36]. Then, a mixture of $Co(ClO_4)_2$ -6 H_2O (548.9 mg, 1.5 mmol), 2,6-diformyl-4-bromophenol (0.344 g, 1.5 mmol), 2,2-dimethyl-1,3-diaminopropane (177.8 μ L, 1.5 mmol), triethylamine (1.0 mL) and ethanol (15.0 mL) was stirred for 20 h at room temperature. The precipitate of Co_2 -Br was obtained by centrifugation and washed with ethanol and deionized water.

2.4. Synthesis of binuclear cobalt polymer (Co₂-P)

The Co₂-P was synthesized through Sonogashira–Hagihara coupling reaction. Typically, Co₂-Br (70.6 mg, 0.1 mmol) and 2,2-dimethyl-1,3-diaminopropane (20.2 mg, 0.1 mmol) were added in a mixed solvent of dimethylformamide (DMF) (10 mL) and triethylamine (13.2 mL), which was purged with N₂ for 20 min to remove the dissolved oxygen. Afterwards, the tetrakis(triphenylphosphine)palladium (34.6 mg, 0.03 mmol) was added into the above mixture, which was further purged with N₂ for 20 min. The mixture was stirred at 120 °C for 24 h. After cooling down to room temperature, the precipitate of Co₂-P was obtained by centrifugation and washed with DMF and methanol.

2.5. Synthesis of Co₂-P@TiO₂

First, Co_2 -Br (70.6 mg, 0.1 mmol), 2,2-dimethyl-1,3-diaminopropane (20.2 mg, 0.1 mmol) and the tetrakis(triphenylphosphine)palladium (34.6 mg, 0.03 mmol) were added in a mixed solvent of DMF (10 mL) and triethylamine (13.2 mL), which was purged with N_2 for 20 min to remove the dissolved oxygen. Afterwards, the above mixture was injected into three-necked flask containing mesoporous TiO_2 (30.3 mg) under reduced pressure, which was stirred at 120~C for 24 h. After cooling down to room temperature, the precipitate of Co_2 -P@ TiO_2 was obtained by centrifugation and washed with DMF and methanol.

2.6. EPR measurement

EPR measurements were carried out by using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the radical trapping agent, \cdot OH and \cdot O $_2$ can be trapped by DMPO to form DMPO- \cdot OH and DMPO- \cdot O $_2$, respectively. 5.0 mg photocatalysts, 20 μ L DMPO and 1.0 mL H $_2$ O were added to 10 mL glass bottle for \cdot OH detection. In addition, 1.0 mL methanol was used to replace 1.0 mL H $_2$ O to detect \cdot O $_2^-$ radicals. EPR measurements were performed in the dark and after 3 min of light irradiation.

2.7. Photocatalytic experiment

The photocatalytic CO_2 reduction measurements were carried out in a 50 mL sealed quartz bottle. First, 1.0 mg photocatalysts was dispersed into 400 μ L ethyl acetate, which was deposited onto the surface of filter paper. Then, the filter paper and 20 μ L deionized water was loaded into the reactor, which was degassed with CO_2 to remove O_2 and other gases, followed by a 300 W Xe lamp irradiation ($\lambda > 320$ nm). The generated gaseous products were analyzed with gas chromatography.

2.8. Photoelectrochemical measurement

Photocurrent and EIS measurements of Co₂-P@TiO₂, TiO₂, Co₂-P and Co₂-P/TiO₂ were performed via a standard three-electrode system in 0.1 M Na₂SO₄ solution with a working electrode, a platinum plate as the

counter electrode, and a saturated Ag/AgCl electrode as a reference electrode. A 300 W xenon lamp was used as the light source. 2 mg sample was dispersed into a solution of 50 μL 5 wt% Nafion and 0.95 mL ethanol. Then, the mixture was deposited onto FTO surface with an area of 4 cm² and left in the air for drying to obtain working electrode. Photocurrent were recorded at 0.6 V. EIS measurement was carried out at -0.6 V in the dark.

2.9. In situ FT-IR spectra measurement

The *in situ* FT-IR spectra were collected under light irradiation with the incremental time upon the introduction of a mixture of CO_2/H_2O vapour. A mixture of 1.0 mg Co_2 -P@TiO2 and 50 mg KBr was ground for 10 min. Then the mixture was sealed in the chamber for purging with N_2 for 20 min.

2.10. In situ XPS measurement

In situ XPS were conducted on an X-ray spectrometer with Al K α as the excitation source and a quzrtz light window. In a typical process, 2.0 mg Co₂-P@TiO₂ was ground for 10 min, which was sealed in the chamber and kept under vacuum. The XPS spectrum of Co₂-P@TiO₂ was first recorded in the dark. After visible light irradiation for 5 min, the XPS spectrum was recorded again.

3. Results and discussion

The powder XRD pattern of TiO₂ shows diffraction peaks at 27.4, 36.1, 39.1, 41.3, 43.9, 54.3, 56.6, 62.9, 64.0, 69.0, and 69.7, which can be assigned to the 110, 101, 200, 111, 210, 211, 220, 002, 310, 301, and 112 diffractions of rutile, indicating its highly crystalline phase (Fig. S1) [35]. The SEM image demonstrates that TiO2 comprises the dehiscent microspheres with the size of about $4 \, \mu m$ (Fig. S2). N_2 adsorption measurement of TiO2 at 77 K and 1 atm reveals a reversible type IV isotherm with an obvious hysteresis loop in the desorption isotherm, suggesting the presence of mesopores (Fig. S3). Brunauer-Emmett-Teller (BET) surface area is 77.3 m² g⁻¹ and the pore size distribution is 12-33 nm (Fig. S4). In addition, the LC-MS of Co₂-Br shows the ion peaks at m/z 750.93 and 860.06, corresponding to the species of [(Co₂-Br)(HCOO)]⁺ and [(Co₂-Br)(OH)(C₂H₅OH) (CH₃OH) (CH₃CN)]⁺, respectively (Fig. S5). Powder XRD pattern of Co₂-Br shows the amorphous natures (Fig. S6). The above results illustrate the successful synthesis of the mesoporous TiO2 and the binuclear cobalt complex of Co₂-Br.

Subsequently, Co₂-Br, 4,4'-diethynylbiphenyl and tetrakis (triphenylphos-phine) palladium as a catalyst were introduced into the pores of mesoporous TiO2, which was heated at 120 °C for 24 h to generate Co₂-P@TiO₂ composite with binuclear cobalt polymer (Co₂-P) incorporated into the pores of mesoporous TiO₂ (Scheme S1) [37,38]. The FT-IR spectrum of Co₂-P@TiO₂ exhibits a characteristic peak at 2207 cm⁻¹, which can be assigned to the stretching vibration of unsymmetrical alkyne bond (-C=C-), suggesting the formation of alkynyl linkages (Fig. S7) [39,40]. The Raman spectrum of Co₂-P@TiO₂ shows a characteristic peak at $2208~\text{cm}^{-1}$, corresponding to the unsymmetrical alkyne bonds (-C≡C-), further verifying the presence of alkynyl linkages (Fig. S8) [10]. The XPS of Co₂-P@TiO₂ shows the binding energies of C, N, O, Co and Ti (Fig. S9). Moreover, no palladium signal was observed in XPS spectrum, which may be attributed to its low concentration (0.83 wt%) in the Co₂-P@TiO₂ as realized from ICP-MS analysis. The powder XRD pattern of Co₂-P@TiO₂ is identical to that of TiO₂, implying the structural integrity of TiO2 in Co2-P@TiO2 composite and the absence of long-range order of Co₂-P polymer (Fig. S10). The above results suggest that the Co₂-P with alkynyl linkages has been successfully synthesized on Co₂-P@TiO₂ composite. Additionally, the SEM image demonstrates that the size and morphology of Co2-P@TiO2 are almost identical to the pristine TiO2 (Fig. 1a and S2). EDS mapping of

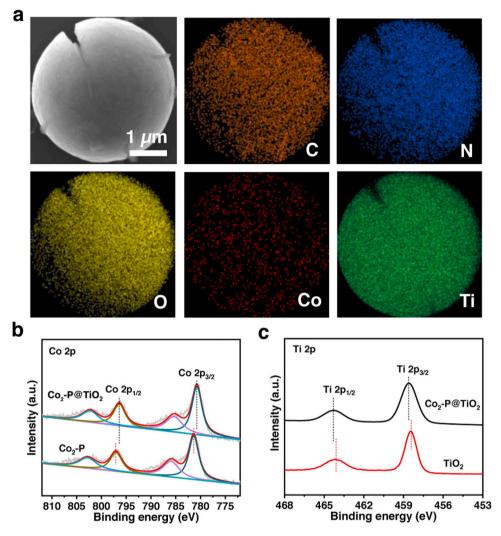


Fig. 1. (a) SEM image and EDS mapping of C, N, O, Co and Ti elements of Co₂-P@TiO₂. (b) XPS spectra for the Co 2p of Co₂-P@TiO₂. (c) XPS spectra for the Ti 2p of TiO₂ and Co₂-P@TiO₂.

Co₂-P@TiO₂ reveals the homogeneous distribution of C, N, O, Co and Ti (Fig. 1a). TEM image of Co₂-P@TiO₂ demonstrates that some dark dots were observed, suggesting the incorporation of Co2-P in TiO2 (Fig. S11a). HR-TEM image of Co₂-P@TiO₂ shows clear interface between Co₂-P and TiO₂, and the lattice fringe of 0.32 nm is attributed to the (110) face of ${\rm TiO_2}$ (Fig. S11b) [35]. The BET surface area and pore size of Co₂-P@TiO₂ are 16.2 m² g⁻¹ and ~4.1 nm respectively, sharply reduced compared with the pristine TiO₂ (Figs. S3 and S4). These results suggest that the Co₂-P was successfully incorporated into the pores of mesoporous TiO2 [41,42]. The ICP-MS analysis reveals that the Co content in Co₂-P@TiO₂ is 1.97 wt%, corresponding to the Co₂-P content of ~12.49 wt% in Co₂-P@TiO₂. In addition, for comparison, pure Co₂-P was also synthesized by the solvothermal reaction of Co₂-Br and 4, 4'-diethynylbiphenyl at 120 °C for 24 h. The FT-IR and Raman spectra of Co₂-P display obvious characteristic peaks at 2209 and 2208 cm⁻¹ respectively, hinting the formation of alkynyl linkages (Figs. S12 and \$13). The SEM image of Co₂-P shows cubic morphology with the size of approximately 300 nm (Fig. S14). The result of powder XRD pattern for Co₂-P demonstrates that it exhibits the amorphous natures (Fig. S6).

To reveal the valence and interfacial charge transfer of $\text{Co}_2\text{-P}$ and $\text{Co}_2\text{-P} \otimes \text{TiO}_2$, the XPS characterization was carried out. As shown in Fig. 1b, the XPS spectrum of $\text{Co}_2\text{-P}$ shows two characteristic peaks at 781.3 and 797.0 eV in Co 2p spectrum, which can be attributed to the binding energies of Co $2p_{3/2}$ and Co $2p_{1/2}$, respectively. Furthermore, two corresponding satellite peaks at 785.9 and 802.8 eV are also

observed, indicating that the oxidation state of Co species in Co₂-P is +2 [43,44]. For Co₂-P@TiO₂, the binding energies of Co $2p_{3/2}$ and Co $2p_{1/2}$ locate 780.7 and 796.4 eV, respectively. There are also two corresponding satellite peaks, demonstrating the +2 oxidation state of Co species in Co₂-P@TiO₂ (Fig. 1b). It is worth noting that the binding energies of Co $2p_{3/2}$ and Co $2p_{1/2}$ in Co₂-P@TiO₂ show negative shift compared with those in Co₂-P, and the binding energies of Ti $2p_{3/2}$ and Ti $2p_{1/2}$ in Co₂-P@TiO₂ displays positive shift compared with those in TiO₂ (Fig. 1c). These results imply that the electron transfers from TiO₂ to Co₂-P, and there are strong interfacial interactions between TiO₂ and Co₂-P.

The light absorbance of TiO_2 and Co_2 -P was investigated by solid UV–vis spectra. As shown in Fig. 2a, the TiO_2 mainly absorb ultraviolet light. The band-gap energy (E_g) of TiO_2 is 3.00 eV, as estimated by the Kubelka-Munk (KM) method based on its solid UV–vis absorption spectroscopy (Fig. S15) [45–48]. By contrast, Co_2 -P can abosrb both ultraviolet and visible lights with the E_g of 2.10 eV (Fig. 2a and S16). Moreover, Mott-Schottky measurements of TiO_2 and Co_2 -P were performed with the frequencies of0.5, 1.0, and 1.5 kHz. The C^2 - values (vs. applied potentials) of them show positive slopes, indicating that they exhibit the character of n-type semiconductors (Figs. 2b and 2c). The flat band potentials of them are about -1.18 and -1.34 V vs. Ag/AgCl (that is, -0.98 and -1.14 V vs. NHE) respectively, which are determined by the intersection points.

These values are equal to the lowest unoccupied molecular orbital

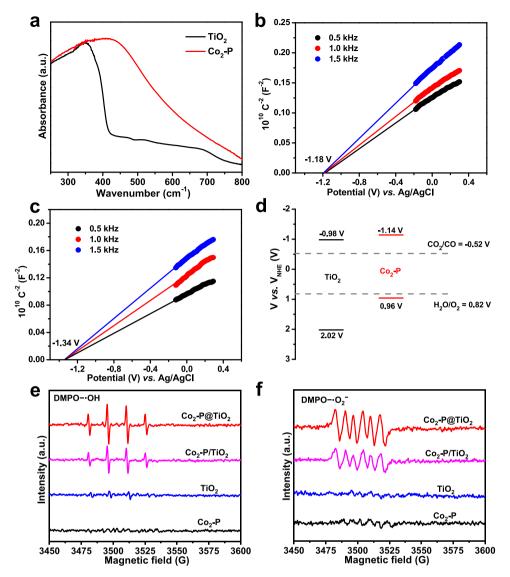


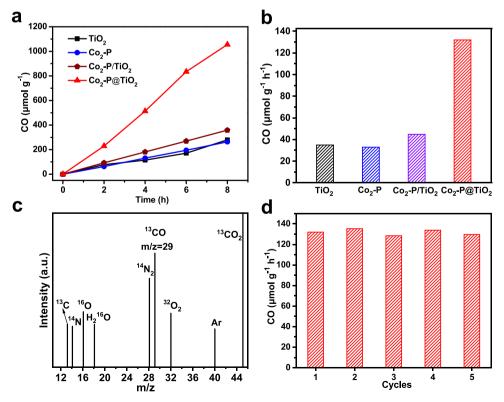
Fig. 2. (a) UV–vis spectra of TiO₂ and Co₂-P. (b) Mott–Schottky plots of TiO₂. (c) Mott–Schottky plots of Co₂-P. (d) Band-structure diagram for TiO₂ and Co₂-P. EPR spectra of (e) DMPO–·OH and (f) DMPO–·O₂ for Co₂-P, TiO₂, Co₂-P@TiO₂ and Co₂-P/TiO₂ under light irradiation.

(LUMO). Therefore, the highest occupied molecular orbital (HOMO) of them are calculated to be 2.02 and 0.96 V vs. NHE, respectively (Fig. 2d). Obviously, the LUMO potentials of both TiO₂ and Co₂-P are more negative than those of photocatalytic CO₂ reduction reactions to CO (-0.52 V vs. NHE), CH₄ (-0.24 V vs. NHE), and HCOOH (-0.61 V vs. NHE), implying that they are theoretically feasible for photocatalytic CO₂ reduction. Moreover, the HOMO potentials of them are more positive than that of H₂O oxidation to O₂ (0.82 V) [11]. Additionally, TiO₂ and Co₂-P display a staggered band structure (Fig. 2d), suggesting that Z-scheme heterojunction in Co₂-P@TiO₂ composite may be formed upon light irradiation, which possibly improves the charge separation efficiency in photocatalytic CO₂ reduction [24].

To confirm if the Co₂-P@TiO₂ composite is the Z-scheme heterojunction photocatalyst, the EPR measurements of Co₂-P, TiO₂ and Co₂-P@TiO₂ with DMPO as a probe were carried out to monitor the generation of ·OH and ·O $_2$ radicals [22–25]. As shown in Fig. 2e, the characteristic DMPO—·OH signals of TiO₂ and Co₂-P@TiO₂ were observed under light irradiation, while no distinct DMPO—·OH signal was observed for Co₂-P, owing to its insufficient oxidizing potential (0.96 V vs. NHE) for the oxidation of H₂O to ·OH (1.90 V vs. NHE) [49]. We note that Co₂-P@TiO₂ shows stronger DMPO—·OH signals than TiO₂, suggesting that more photogenerated holes of TiO₂ on Co₂-P@TiO₂

composite are retained compared with the pristine TiO₂. In addition, the characteristic signals of DMPO $-\cdot$ O₂ were detected for Co₂-P, TiO₂ and Co₂-P@TiO₂, among which Co₂-P@TiO₂ exhibits stronger DMPO $-\cdot$ O₂ signals than both Co₂-P and TiO₂, implying more photogenerated electrons of Co₂-P on Co₂-P@TiO₂ composite than the pristine Co₂-P and TiO₂ (Fig. 2f). Moreover, no DMPO $-\cdot$ OH and DMPO $-\cdot$ O₂ signals were detected in the dark for Co₂-P, TiO₂ and Co₂-P@TiO₂, demonstrating that the \cdot OH and \cdot O₂ species were produced by photogenerated holes and electrons, respectively (Figs. S17 and S18). The above results strongly confirm that the Z-scheme heterojunction was formed between Co₂-P and TiO₂ in Co₂-P@TiO₂ composite *via* electrostatic interactions upon light irradiation, which can promote charge separation in photocatalysis (Fig. S19

and Scheme S2). Also, the alkyne bonds (-C \equiv C-) in Co₂-P can be used as the electron withdrawing group to further facilitate charge transfer between TiO₂ and Co₂-P in Co₂-P@TiO₂ [50]. For comparison, a Z-scheme heterojunction of Co₂-P/TiO₂ was also conventionally fabricated by simply physical mixture of Co₂-P and TiO₂ *via* electrostatic interactions (Figs. 2e, 2f and S19).


Encouraged by the analysis above, the photocatalytic CO₂ reduction reactions over Co₂-P@TiO₂, TiO₂, Co₂-P and Co₂-P/TiO₂ were conducted in a CO₂-saturated gas-solid reactor with H₂O as the electron

donor. For all evaluated photocatalysts, the CO is the main reduction product with a small quantity of H2 by-product. After 8 h of light irradiation, the CO yield of Co₂-P@TiO₂ is 1113.6 µmol g⁻¹ (corresponding to the production rate of 139.2 μ mol g⁻¹ h⁻¹). In sharp contrast, TiO₂, Co₂-P and Co₂-P/TiO₂ exhibit significantly lower CO generation rates of 34.9, 32.9 and 44.8 μ mol g⁻¹ h⁻¹, respectively (Fig. 3a and S20). The photocatalytic activity of Co₂-P@TiO₂ is about 4.0, 4.2 and 3.1 times higher than those of TiO₂, Co₂-P and Co₂-P/TiO₂, manifesting the best photocatalytic activity of Co2-P@TiO2 for CO2 reduction among the tested photocatalysts. Furthermore, the CO generation rate of Co2-P@TiO2 is superior to most of the reported heterogeneous photocatalysts by using H2O as the electron donor (Table S1). The excellent activity of Co2-P@TiO2 could be attributed to the construction of Zscheme heterojunction between Co₂-P and TiO₂. It should be noted that though Co₂-P/TiO₂ is also a Z-scheme heterojunction constructed from two same semiconductors of Co₂-P and TiO₂, the photocatalytic activity of Co₂-P/TiO₂ is only slightly higher than those of Co₂-P and TiO₂. These results illustrate that the greatly enhanced photocatalytic activity of Co2-P@TiO2 is not only related with formation of Z-scheme heterojunction, but also closely related with the formation mode of the Zscheme heterojunction. In Co₂-P@TiO₂, Co₂-P is incorporated into the pores of mesoporous TiO₂, thus the interfacial contact area between Co₂-P and TiO2 is much larger than that in Co2-P/TiO2. In this case, the photogenerated electrons of TiO2 could quickly transfer to Co2-P from all around, thus the reaction dynamics of CO2 reduction over Co2-P@TiO2 could be greatly accelerated in contrast to Co2-P/TiO2 with smaller interfacial contact area and only one direction of electron injection (Scheme 1). This result demonstrates that the incorporation of Co₂-P into the pores of mesoporous TiO₂ to form Z-scheme heterojunction is an effective strategy to improve catalytic performance for CO₂ photoreduction. In addition to CO, low H₂ production rates of 11.8, 6.6, 10.2 and $3.0~\mu mol~g^{-1}~h^{-1}$ are detected for Co_2 -P@TiO2, TiO_2 , Co_2 -P and Co2-P/TiO2, respectively (Fig. S21), revealing that most

photogenerated electrons take part in the CO_2 reduction with CO selectivities of 92.2, 84.1, 76.3 and 93.7 %, respectively. Additionally, the O_2 was also detected in the catalytic system, with the O_2 formation rate of 75.4 μ mol g⁻¹ h⁻¹ for Co_2 -P@TiO₂. Note that the stoichiometric ratio of CO/H_2 and O_2 is about 2:1, suggesting the mode of artificial photosynthesis (Fig. 3b). Additionally, the apparent quantum efficiency of Co_2 -P@TiO₂ was 0.022 %, which was measured at 365 nm.

A series of control experiments demonstrate that negligible and even no CO product was detected in the absence of Co2-P@TiO2, CO2, H2O or light irradiation (Fig. S22). To confirm the carbon source of CO generated, the ¹³CO₂ isotope trace experiment for Co₂-P@TiO₂ was carried out. The mass spectrum (MS) shows a 13 CO signal peak at m/z=29, verifying that the carbon source of CO originates from CO₂ (Fig. 3c) [6]. Moreover, the $H_2^{18}O$ isotope trace experiment over Co_2 -P@TiO₂ was conducted to identify the electron source for photocatalytic CO2 reduction to CO. The result of MS exhibits a signal peak at m/z = 36, which is attributed to ¹⁸O₂, confirming that the electron source for CO₂ photoreduction comes from the oxidation of H₂O (Fig. S23) [6]. The catalytic durability of Co₂-P@TiO₂ was further evaluated. As shown in Fig. 3d, the photocatalytic activity for CO₂ reduction of Co₂-P@TiO₂ is retained during the five consecutive cycles. The powder XRD and Raman spectrum of Co₂-P@TiO₂ after the photocatalytic reaction are similar to those of freshly prepared (Figs. S24 and S25). These results demonstrate the excellent stability of Co₂-P@TiO₂ during the photocatalytic CO₂

To illustrate the higher photocatalytic activity of Co_2 -P@TiO₂ over TiO_2 , Co_2 -P and Co_2 -P/TiO₂, photocurrent, EIS and PL measurements of them were performed [51,52]. As shown in Fig. 4a, Co_2 -P@TiO₂ shows the highest photocurrent response among the four tested photocatalysts, demonstrating that it has the most efficient charge separation. The results of EIS indicate that in comparison with TiO_2 , Co_2 -P and TiO_2 /- Co_2 -P, Co_2 -P@TiO₂ exhibits the smallest semicircle radius, implying its lowest charge-transfer resistance (Fig. S26). The PL spectra show that

Fig. 3. (a) Time-dependent CO generation in photocatalytic CO₂ reduction over Co₂-P@TiO₂, TiO₂, Co₂-P and Co₂-P/TiO₂. (b) Yields of reduced and oxidized products over Co₂-P@TiO₂. (c) Mass spectrum of the gaseous product generated in the photocatalytic ¹³CO₂ reduction over Co₂-P@TiO₂. (d) The production rate of CO in five consecutive catalytic cycles over Co₂-P@TiO₂.

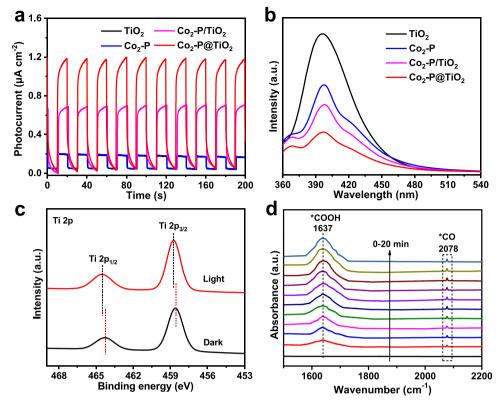


Fig. 4. (a) Photocurrent tests and (b) PL spectra of Co_2 -P@TiO₂, TiO₂, Co_2 -P and TiO₂/Co₂-P. (c) XPS spectra for Ti 2p of Co_2 -P@TiO₂ in the dark and upon light irradiation. (d) In situ FTIR spectra of Co_2 -P@TiO₂ in the process of photocatalytic CO_2 reduction.

the emission intensity of $\text{Co}_2\text{-P}(\text{ETiO}_2)$ is the weakest among all tested photocatalysts, suggesting that it has the fastest electron transfer (Fig. 4b). All the above results well support the best photocatalytic activity of $\text{Co}_2\text{-P}(\text{ETiO}_2)$ for CO_2 reduction among the tested catalysts. These results also demonstrate that the incorporation of $\text{Co}_2\text{-P}$ into the pores of mesoporous TiO_2 could really form a new Z-scheme heterojunction which can greatly accelerates the charge separation and electron transfer, thereby boosting the catalytic reaction dynamics of artificial photosynthesis.

The possible catalytic mechanism for CO₂ photoreduction coupled with H2O oxidation over Co2-P@TiO2 were revealed by in situ XPS measurements. The Ti $2p_{3/2}$ and Ti $2p_{1/2}$ binding energies of Co₂-P@TiO₂ locate at 458.5 and 464.2 eV in the dark, which shows positive shift to 458.8 and 464.5 eV respectively upon light irradiation (Fig. 4c). Moreover, the O 1 s binding energy of Ti-O bond also displays positive shift after light irradiation. These results imply that TiO2 donates electron (Fig. S27). By contrast, the Co $2p_{3/2}$ and Co $2p_{1/2}$ binding energies of Co₂-P@TiO₂ exhibits negative shift upon light irradiation compared with those in the dark, suggesting that the Co²⁺ accepts electron (Fig. S28). As Co₂-P@TiO₂ is a Z-scheme heterojunction, upon light irradiation, both Co2-P and TiO2 of Co2-P@TiO2 harvest light to generate electron-hole pairs, where the photogenerated electrons in the LUMO of TiO2 are transferred to the HOMO of Co2-P to combine with photogenerated holes. The retained photogenerated holes in the HOMO of TiO₂ can oxidize H₂O to O₂, and the photogenerated electrons in the LUMO of Co₂-P are able to reduce adsorbed CO₂ to CO (Scheme S2). In order to monitor the key intermediates during the process of CO2 photoreduction to CO over Co₂-P@TiO₂, in situ FTIR measurements were performed. As shown in Fig. 4d, new infrared peaks at 1637 and 2028 cm⁻¹ were detected, and their intensities gradually increase along with the incremental irradiation time. The two new peaks can be assigned to the signals of *COOH and *CO intermediates respectively, which are regarded as the key intermediates for CO generation in CO2 reduction reaction [53,54].

4. Conclusions

In summary, by incorporation of binuclear cobalt polymer into the pores of mesoporous TiO2, a new Z-scheme heterojunction of Co2-P@TiO2 with surrounding interfacial contact area between Co2-P and TiO₂ was successfully constructed, which exhibits an excellent catalytic activity for CO₂ photoreduction to CO with H₂O as the electron donor, without addition of any photosensitizer and sacrificial agent. The CO production rate reaches as high as 139.2 μmol g⁻¹ h⁻¹, which is 4.0, 4.2 and 3.1 times higher than TiO2, Co2-P and the conventionally prepared Z-scheme heterojunction of Co₂-P/TiO₂, respectively. Photoelectrochemical experiments unveil that in comparison with TiO2, Co2-P and Co2-P/TiO2, Co2-P@TiO2 exhibits the highest charge separation efficiency, which clearly accounts for its best catalytic activity. The results of in situ FTIR demonstrate that both *COOH and *CO reaction intermediates were successfully detected for the formation of CO. This work provides a facile approach to develop efficient catalysts for artificial photosynthesis.

CRediT authorship contribution statement

Shan Wang: Investigation. Yun-Nan Gong: Writing – review & editing, Writing – original draft, Investigation. Jian-Hua Mei: Investigation. Hui-Jun Dong: Investigation. Tong-Bu Lu: Supervision. Di-Chang Zhong: Supervision, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

This work was supported by National Key R&D Program of China (2022YFA1502902), the National Natural Science Foundation of China (22371208, 22271218, 22071182, 21931007).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2024.124310.

References

- [1] S.J. Davis, K. Caldeira, H.D. Matthews, Future CO₂ emissions and climate change from existing energy infrastructure, Science 329 (2010) 1330–1333.
- [2] C.L. Quéré, G.P. Peters, P. Friedlingstein, R.M. Andrew, J.G. Canadell, S.J. Davis, R. B. Jackson, M.W. Jones, Fossil CO₂ emissions in the post-COVID-19 era, Nat. Clim. Change 11 (2021) 197–199.
- [3] B. Zhang, L. Sun, Artificial photosynthesis: opportunities and challenges of molecular catalysts, Chem. Soc. Rev. 48 (2019) 2216–2264.
- [4] E.A.R. Cruz, D. Nishiori, B.L. Wadsworth, N.P. Nguyen, L.K. Hensleigh, D. Khusnutdinova, A.M. Beiler, G.F. Moore, Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies, Chem. Rev. 122 (2022) 16051–16109.
- [5] S. Yoshino, T. Takayama, Y. Yamaguchi, A. Iwase, A. Kudo, CO₂ reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis, Acc. Chem. Res. 55 (2022) 966–977.
- [6] L.-Y. Wu, Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M. Zhang, M. Zhang, T.-B. Lu, Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO₂ reduction, Angew. Chem. Int. Ed. 58 (2019) 9491–9495.
- [7] L. Zhang, R.-H. Li, X.-X. Li, J. Liu, W. Guan, L.-Z. Dong, S.-L. Li, Y.-Q. Lan, Molecular oxidation-reduction junctions for artificial photosynthetic overall reaction, PNAS 119 (2022) e2210550119.
- [8] W. Lin, J. Lin, X. Zhang, L. Zhang, R.A. Borse, Y. Wang, Decoupled artificial photosynthesis via a catalysis-redox coupled COF||BiVO₄ photoelectrochemical device, J. Am. Chem. Soc. 145 (2023) 18141–18147.
- [9] N.-Y. Huang, J.-Q. Shen, X.-W. Zhang, P.-Q. Liao, J.-P. Zhang, X.-M. Chen, Coupling ruthenium bipyridyl and cobalt imidazolate units in a metal-organic framework for an efficient photosynthetic overall reaction in diluted CO₂, J. Am. Chem. Soc. 144 (2022) 8676–8682.
- [10] Y. Wang, X. Shang, J. Shen, Z. Zhang, D. Wang, J. Lin, J.C.S. Wu, X. Fu, X. Wang, C. Li, Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO₂ reduction and H₂O oxidation, Nat. Commun. 11 (2020) 3043.
- [11] Y.-N. Gong, X. Guan, H.-L. Jiang, Covalent organic frameworks for photocatalysis: synthesis, structuralfeatures, fundamentals and performance, Coord. Chem. Rev. 475 (2023) 214889.
- [12] L.-Z. Dong, L. Zhang, J. Liu, Q. Huang, M. Lu, W.-X. Ji, Y.-Q. Lan, Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis, Angew. Chem. Int. Ed. 59 (2020) 2659–2663.
- [13] H. Li, R. Li, G. Liu, M. Zhai, J. Yu, Noble-metal-free single- and dual-atom catalysts for artificial photosynthesis, Adv. Mater. 35 (2023) 2301307.
- [14] S. Chen, Y. Qi, C. Li, K. Domen, F. Zhang, Surface strategies for particulate photocatalysts toward artificial photosynthesis, Joule 2 (2018) 2260–2288.
- [15] J. Ran, M. Jaroniec, S.-Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO₂ reduction: achievements, challenges, and opportunities, Adv. Mater. 30 (2018) 17046449
- [16] Y.-Z. Cheng, W. Ji, P.-Y. Hao, X.-H. Qi, X. Wu, X.-M. Dou, X.-Y. Bian, D. Jiang, F.-T. Li, X.-F. Liu, D.-H. Yang, X. Ding, B.-H. Han, A fully conjugated covalent organic framework with oxidative and reductive sites for photocatalytic carbon dioxide reduction with water, Angew. Chem. Int. Ed. 62 (2023) e202308523.
- [17] L. Wang, B. Zhu, J. Zhang, J.B. Ghasemi, M. Mousavi, J. Yu, S-scheme heterojunction photocatalysts for CO₂ reduction, Matter 5 (2022) 4187–4211.
- [18] J. Xiong, H. Li, J. Zhou, J. Di, Recent progress of indium-based photocatalysts: classification, regulation and diversified applications, Coord. Chem. Rev. 473 (2022) 214819.
- [19] Y.-F. Mu, C. Zhang, M.-R. Zhang, W. Zhang, M. Zhang, T.-B. Lu, Direct Z-scheme heterojunction of ligand-free FAPbBr $_3/\alpha$ -Fe $_2O_3$ for boosting photocatalysis of CO $_2$ reduction coupled with water oxidation, ACS Appl. Mater. Interfaces 13 (2021) 22314–22322.
- [20] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43 (2014) 5234–5244.
- [21] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29 (2017) 1601694.
- [22] H.S. Moon, K.-C. Hsiao, M.-C. Wu, Y. Yun, Y.-J. Hsu, K. Yong, Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for

- enhanced photocatalytic H₂ evolution and in-depth analysis of the charge-transfer mechanism, Adv. Mater. 35 (2023) 2200172.
- [23] S. Chen, J.J.M. Vequizo, Z. Pan, T. Hisatomi, M. Nakabayashi, L. Lin, Z. Wang, K. Kato, A. Yamakata, N. Shibata, T. Takata, T. Yamada, K. Domen, Surface modifications of (ZnSe)_{0.5}(CuGa_{2.5}Se_{4.25})_{0.5} to promote photocatalytic Z-scheme overall water splitting, J. Am. Chem. Soc. 143 (2021) 10633–10641.
- [24] K. Su, S.-X. Yuan, L.-Y. Wu, Z.-L. Liu, M. Zhang, T.-B. Lu, Nanoscale janus Z-scheme heterojunction for boosting artificial photosynthesis, Small 19 (2023) 2301192.
- [25] S. Yoshino, A. Iwase, Y. Yamaguchi, T.M. Suzuki, T. Morikawa, A. Kudo, Photocatalytic CO₂ reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa)_{0.5}ZnS₂ in the presence of basic additives, J. Am. Chem. Soc. 144 (2022) 2323–2332.
- [26] H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, J. Tang, Covalent organic framework photocatalysts: structures and applications, Chem. Soc. Rev. 49 (2020) 4135–4165.
- [27] W. Li, A. Elzatahry, D. Aldhayan, D. Zhao, Core-shell structured titanium dioxide nanomaterials for solar energy utilization, Chem. Soc. Rev. 47 (2018) 8203–8237.
- [28] M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong, R. Xu, Amino-assisted anchoring of CsPbB₇₃ perovskite quantum dots on porous g-C₂N₄ for enhanced photocatalytic CO₂ reduction, Angew. Chem. Int. Ed. 57 (2018) 13570–13574.
- [29] Z. Jiang, X. Xu, Y. Ma, H.S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Peng, L. Zan, H. Deng, Filling metal-organic framework mesopores with TiO₂ for CO₂ photoreduction, Nature 586 (2020) 549–554.
- [30] N.-Y. Huang, H. He, S.-J. Liu, H.-L. Zhu, Y.-J. Li, J. Xu, J.-R. Huang, X. Wang, P.-Q. Liao, X.-M. Chen, Electrostatic attraction-driven assembly of a metal-organic framework with a photosensitizer boosts photocatalytic CO₂ reduction to CO, J. Am. Chem. Soc. 143 (2021) 17424–17430.
- [31] W. Li, J. Liu, D. Zhao, Mesoporous materials for energy conversion and storage devices, Nat. Rev. Mater. 1 (2016) 16023.
- [32] H. Huang, R. Shi, Z. Li, J. Zhao, C. Su, T. Zhang, Triphase photocatalytic CO₂ reduction over silver-decorated titanium oxide at a gas-water boundary, Angew. Chem. Int. Ed. 61 (2022) e202200802.
- [33] A. Zhou, Y. Dou, C. Zhao, J. Zhou, X.-Q. Wu, J.-R. Li, A leaf-branch TiO₂/carbon@ MOF composite for selective CO₂ photoreduction, Appl. Catal. B 264 (2020) 118519.
- [34] Y. Wu, Z. Liu, Y. Li, J. Chen, X. Zhu, P. Na, Construction of 2D–2D TiO₂ nanosheet/layered WS₂ heterojunctions with enhanced visible-light-responsive photocatalytic activity, Chin. J. Catal. 40 (2019) 60–69.
- [35] K. Lan, R. Wang, W. Zhang, Z. Zhao, A. Elzatahry, X. Zhang, Y. Liu, D. Al-Dhayan, Y. Xia, D. Zhao, Mesoporous TiO₂ microspheres with precisely controlled crystallites and architectures, Chem 4 (2018) 2436–2450.
- [36] M.R. Kember, P.D. Knight, P.T.R. Reung, C.K. Williams, Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure, Angew. Chem. Int. Ed. 48 (2009) 931–933.
- [37] J.-S.M. Lee, A.I. Cooper, Advances in conjugated microporous polymers, Chem. Rev. 120 (2020) 2171–2214.
- [38] C. Palladino, T. Fantoni, L. Ferrazzano, B. Muzzi, A. Ricci, A. Tolomelli, W. Cabri, New mechanistic insights into the copper-free heck—cassar—sonogashira crosscoupling reaction, ACS Catal. 13 (2023) 12048–12061.
- [39] W. Zhou, H. Shen, Y. Zeng, Y. Yi, Z. Zuo, Y. Li, Y. Li, Controllable synthesis of graphdiyne nanoribbons, Angew. Chem. Int. Ed. 59 (2020) 4908–4913.
 [40] J. Li, X. Gao, B. Liu, Q. Feng, X.-B. Li, M.-Y. Huang, Z. Liu, J. Zhang, C.-H. Tung, L.-
- [40] J. Li, X. Gao, B. Liu, Q. Feng, X.-B. Li, M.-Y. Huang, Z. Liu, J. Zhang, C.-H. Tung, L.-Z. Wu, Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production, J. Am. Chem. Soc. 138 (2016) 3954–3957.
- [41] G.-Y. Qiao, D. Guan, S. Yuan, H. Rao, X. Chen, J.-A. Wang, J.-S. Qin, J.-J. Xu, J. Yu, Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode, Mater. J. Am. Chem. Soc. 143 (2021) 14253–14260.
- [42] Y.-N. Gong, L. Jiao, Y. Qian, C.-Y. Pan, L. Zheng, X. Cai, B. Liu, S.-H. Yu, H.-L. Jiang, Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO₂ reduction, Angew. Chem. Int. Ed. 59 (2020) 2705–2709.
- [43] Y.-N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng, J. Jiang, H.-L. Jiang, Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks, J. Am. Chem. Soc. 142 (2020) 16723–16731.
- [44] H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, X. Meng, J. Zhang, J. Ye, Efficient visible-light-driven carbon dioxide reduction by a singleatom implanted metal-organic framework, Angew. Chem. Int. Ed. 55 (2016) 14310–14314.
- [45] Y. Wang, Z. Zhang, L. Zhang, Z. Luo, J. Shen, H. Lin, J. Long, J.C.S. Wu, X. Fu, X. Wang, C. Li, Visible-light driven overall conversion of CO₂ and H₂O to CH₄ and O₂ on 3D-SiC@2D-MoS₂ heterostructure, J. Am. Chem. Soc. 140 (2018) 14595–14598.
- [46] J. Bian, Z. Zhang, J. Feng, M. Thangamuthu, F. Yang, L. Sun, Z. Li, Y. Qu, D. Tang, Z. Lin, F. Bai, J. Tang, L. Jing, Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO₂ photoreduction without a cocatalyst, Angew. Chem. Int. Ed. 60 (2021) 20906–20914.
- [47] J.-J. Liu, S.-N. Sun, J. Liu, Y. Kuang, J.-W. Shi, L.-Z. Dong, N. Li, J.-N. Lu, J.-M. Lin, S.-L. Li, Y.-Q. Lan, Achieving high-efficient photoelectrocatalytic degradation of 4-chlorophenol via functional reformation of titanium-oxo clusters, J. Am. Chem. Soc. 145 (2023) 6112–6122.
- [48] J. Ding, X. Guan, J. Lv, X. Chen, Y. Zhang, H. Li, D. Zhang, S. Qiu, H.-L. Jiang, Q. Fang, Three-dimensional covalent organic frameworks with ultra-large pores for highly efficient photocatalysis, J. Am. Chem. Soc. 145 (2023) 3248–3254.

- [49] S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Environmental implications of hydroxyl radicals (•OH), Chem. Rev. 115 (2015) 13051–13092.
- [50] G. Shi, Y. Xie, L. Du, X. Fu, X. Chen, W. Xie, T.-B. Lu, M. Yuan, M. Wang, Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO₂ reduction to CH₄, Angew. Chem. Int. Ed. 61 (2022) e202203569.
- [51] Y. Yang, H.-Y. Zhang, Y. Wang, L.-H. Shao, L. Fang, H. Dong, M. Lu, L.-Z. Dong, Y.-Q. Lan, F.-M. Zhang, Integrating enrichment, reduction and oxidation sites in one system for artificial photosynthetic diluted CO₂ reduction. Adv. Mater. 35 (2023) 2304170.
- [52] Y.-N. Gong, B.-Z. Shao, J.-H. Mei, W. Yang, D.-C. Zhong, T.-B. Lu, Facile synthesis of C_3N_4 -supported metal catalysts for efficient CO_2 photoreduction, Nano Res. 15 (2022) 551–556.
- [53] Y. Li, B. Wei, M. Zhu, J. Chen, Q. Jiang, B. Yang, Y. Hou, L. Lei, Z. Li, R. Zhang, Y. Lu, Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO₂ electroreduction, Adv. Mater. 33 (2021) 2102212.
- [54] L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M.K.H. Leung, L. Sun, J. Hou, Engineering single-atom active sites on covalent organic frameworks for boosting CO₂ photoreduction, J. Am. Chem. Soc. 144 (2022) 17097–17109.